
M A N N I N G

Jeff Smith
Foreword by Sean Owen

Designs that scale

 Machine Learning Systems
DESIGNS THAT SCALE

JEFF SMITH
FOREWORD BY SEAN OWEN

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Susanna Kline
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Kostas Passadis
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copyeditor: Corbin Collins
Proofreader: Katie Tennant

Technical proofreader: Jerry Kuch
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617293337
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

iii

brief contents
PART 1 FUNDAMENTALS OF REACTIVE MACHINE LEARNING...................1

1 ■ Learning reactive machine learning 3

2 ■ Using reactive tools 23

PART 2 BUILDING A REACTIVE MACHINE LEARNING SYSTEM................41

3 ■ Collecting data 43

4 ■ Generating features 69

5 ■ Learning models 93

6 ■ Evaluating models 117

7 ■ Publishing models 135

8 ■ Responding 149

PART 3 OPERATING A MACHINE LEARNING SYSTEM.........................165

9 ■ Delivering 167

10 ■ Evolving intelligence 177

v

contents
foreword ix
preface xii
acknowledgments xv
about this book xvii
about the author xxi
about the cover illustration xxii

PART 1 FUNDAMENTALS OF REACTIVE MACHINE LEARNING1

1 Learning reactive machine learning 3
1.1 An example machine learning system 4

Building a prototype system 4 ■ Building a better system 7

1.2 Reactive machine learning 7
Machine learning 8 ■ Reactive systems 11 ■ Making machine-
learning systems reactive 16 ■ When not to use reactive machine
learning 20

2 Using reactive tools 23
2.1 Scala, a reactive language 24

Reacting to uncertainty in Scala 25 ■ The uncertainty of time 26

CONTENTSvi

2.2 Akka, a reactive toolkit 29
The actor model 29 ■ Ensuring resilience with Akka 31

2.3 Spark, a reactive big data framework 34

PART 2 BUILDING A REACTIVE MACHINE LEARNING SYSTEM41

3 Collecting data 43
3.1 Sensing uncertain data 44

3.2 Collecting data at scale 48
Maintaining state in a distributed system 48 ■ Understanding
data collection 52

3.3 Persisting data 53
Elastic and resilient databases 54 ■ Fact databases 55 ■ Querying
persisted facts 57 ■ Understanding distributed-fact databases 62

3.4 Applications 66

3.5 Reactivities 67

4 Generating features 69
4.1 Spark ML 71

4.2 Extracting features 71

4.3 Transforming features 74
Common feature transforms 76 ■ Transforming concepts 79

4.4 Selecting features 80

4.5 Structuring feature code 82
Feature generators 82 ■ Feature set composition 86

4.6 Applications 90

4.7 Reactivities 90

5 Learning models 93
5.1 Implementing learning algorithms 94

Bayesian modeling 96 ■ Implementing Naive Bayes 98

5.2 Using MLlib 102
Building an ML pipeline 102 ■ Evolving modeling techniques 107

5.3 Building facades 109
Learning artistic style 110

5.4 Reactivities 115

CONTENTS vii

6 Evaluating models 117
6.1 Detecting fraud 118

6.2 Holding out data 119

6.3 Model metrics 122

6.4 Testing models 127

6.5 Data leakage 129

6.6 Recording provenance 130

6.7 Reactivities 132

7 Publishing models 135
7.1 The uncertainty of farming 136

7.2 Persisting models 136

7.3 Serving models 141
Microservices 141 ■ Akka HTTP 142

7.4 Containerizing applications 144

7.5 Reactivities 147

8 Responding 149
8.1 Moving at the speed of turtles 150

8.2 Building services with tasks 150

8.3 Predicting traffic 153

8.4 Handling failure 157

8.5 Architecting response systems 160

8.6 Reactivities 162

PART 3 OPERATING A MACHINE LEARNING SYSTEM165

9 Delivering 167
9.1 Shipping fruit 168

9.2 Building and packaging 169

9.3 Build pipelines 170

9.4 Evaluating models 171

9.5 Deploying 172

9.6 Reactivities 175

CONTENTSviii

10 Evolving intelligence 177
10.1 Chatting 177

10.2 Artificial intelligence 178

10.3 Reflex agents 178

10.4 Intelligent agents 180

10.5 Learning agents 181

10.6 Reactive learning agents 185
Reactive principles 185 ■ Reactive strategies 186 ■ Reactive
machine learning 186

10.7 Reactivities 186
Libraries 187 ■ System data 188

10.8 Reactive explorations 190
Users 190 ■ System dimensions 191 ■ Applying reactive
principles 192

appendix Getting set up 195

index 197

ix

foreword
Today’s data scientists and software engineers are spoiled for choice when looking for
tools to build machine learning systems. They have a range of new technologies that
make it easier than ever to build entire machine learning systems. Considering where
we—the machine learning community—started, it’s exciting to see a book that
explores how powerful and approachable the current technologies are.

 To better understand how we got here, I’d like to share a bit of my own story. They
tell me I’m a data scientist, but I think I’m only here by accident. I began as a software
person and grew up on Java 1.3 and EJB. I left the software-engineer role at Google a
decade ago, although I dabbled in open source and created a recommender system
that went on to be part of Apache Mahout in 2009. Its goal was to implement machine
learning algorithms on the then-new Apache Hadoop MapReduce framework. The
engineering parts were familiar—MapReduce came from Google, after all. The
machine learning was new and exciting, but the tools were lacking.

 Not knowing any better, and with no formal background in ML, I tried to help
build ML at scale. In theory, this was going to open an era of better ML, because more
data generally means better models. ML just needed tooling rebuilt on the nascent
distributed computing platforms like Hadoop.

 Mahout (0.x) was what you’d expect when developers with a lot of engineering back-
ground and a little stats background try to build ML tools: JVM-based, modular, scalable,
complex, developer-oriented, baroque, and sometimes eccentric in its interpretation of
stats concepts. In retrospect, classic Mahout wasn’t interesting because it was a better ver-
sion of stats tooling. In truth, it was much less usable than, say, R (which I admit having

FOREWORDx

never heard of until 2010). Mahout was interesting, because it was built from the begin-
ning to work at web scale, using tooling developed for enterprise software engineering.
The collision of stats tooling with new approaches to handling web-scale data gave birth
to what became known as data science.

 The more I back-filled my missing context about how real statisticians and analysts
had been successfully applying ML for decades, thank you very much, the more I real-
ized that the existing world of analytics tooling optimizes for some usages and not oth-
ers. Python, R, and their ecosystems have rich analytics libraries and visualization
tools. They’re not as concerned with issues of scale or production deployment.

 Coming from an enterprise software world, I was somewhat surprised that the tool-
ing generally ended at building a model. What about doing something with the model
in production? I found this was usually viewed as a separate activity for software engi-
neers to undertake. The engineering community hadn’t settled on clear patterns for
product application around Hadoop-related technologies.

 In 2012, I spun out a small company, Myrrix, to
expand on the core premise of Mahout and make
it into a continuously learning, updating service
with the ability to serve results from the model in
production—not just a library that output coeffi-
cients. This became part of Cloudera and was
reimagined again, on top of Apache Spark, as Oryx
(https://github.com/OryxProject/oryx).

 Spark was another game changer for the
Hadoop ecosystem. It brought a higher-level, nat-
ural functional paradigm to big data software
development, more like you’d encounter in Python. It added language bindings to
Python and R. It brought a new machine learning library, Spark MLlib. By 2015, the
big data ecosystem at large was suddenly much closer to the world of conventional
analytics tools.

 These and other tools have bridged the worlds of stats and software engineering
such that the two now interact regularly. Today’s big data engineer has ready access to
Python-only tooling like TensorFlow for deep learning and Seaborn for visualization.
The software-engineering culture of version control and testing and strongly typed lan-
guages has flowed into the data science community, too.

 That brings us back to this book. It doesn’t cover just tools but also the entire job
of building a machine learning system. It gets into topics that people used to gloss
over, like model serialization and building model servers. The language of the book is
primarily Scala, a unique language that is both principled and expressive without sac-
rificing conveniences like type inference. Scala has been used to build powerful tech-
nologies like Spark and Akka, which the book shows you how to use to build machine
learning systems. The book also doesn’t ignore the importance of interoperability
with Python technologies or portable application builds with Docker.

FOREWORD xi

 We’ve come a long way, and there’s farther to go. The person who can master the
tools and techniques in this book will be well prepared to play a role in machine learn-
ing’s even more exciting future.

 SEAN OWEN

 DIRECTOR OF DATA SCIENCE, CLOUDERA

xii

preface
I’ve been working with data for my entire professional career. Following my interests,
I’ve worked on ever-more-analytically sophisticated systems as my career has pro-
gressed, leading to a focus on machine learning and artificial intelligence systems.

 As my work content evolved from more traditional data-warehousing sorts of tasks
to building machine learning systems, I was struck by a strange absence. When I was
working primarily with databases, I could rely on the rich body of academic and pro-
fessional literature about how to build databases and applications that interact with
them to help me define what a good design was. So, I was confused and surprised to find
that machine learning as a field generally lacked this sort of guidance. There were no
canonical implementations of anything other than the model learning algorithms.
Huge chunks of the system that needed to be built were largely glossed over in the lit-
erature. Often, I couldn’t even find a consistent name for a given system component,
so my colleagues and I inevitably confused each other with our choices of terminology.

 What I wanted was a framework, something like a Ruby on Rails for machine
learning, but no such framework seemed to exist.1 Barring a commonly accepted
framework, I wanted at least some clear design patterns for how to build machine
learning systems; but alas, there was no Design Patterns for Machine Learning Systems to
be found, either.

1 Eventually, I came across Sean Owen’s work on Oryx and Simon Chan’s on PredictionIO, which were super-
instructive. If you’re interested in the background of machine learning architectures, you’ll benefit from
reviewing them both.

PREFACE xiii

 So, I built machine learning systems the hard way: by trying things and figuring out
what didn’t work. When I needed to invent terminology, I just picked reasonable
terms. Over time, I tried to synthesize some of my learnings about what worked for
machine learning system design and what didn’t into a coherent whole. Fields like dis-
tributed systems and functional programming offered the promise of adding coher-
ence to my views about machine learning systems, but
neither was particularly focused on application to
machine learning.

 Then, I discovered reactive systems design, via
reading the Reactive Manifesto (www.reactivemani-
festo.org). It was startling in its simple coherence and
bold mission. Here was a complete world view of what
the challenge of building modern software applica-
tions was and a principled way of building applications
that met that challenge. I was excited by the promise
of the approach and immediately began attempting to
apply it to the problems I’d seen in architecting and
building machine learning systems.

 This inquiry led me to poop—specifically, to dog
poop. I tried to imagine how a naive machine learning
system could be refactored into something much bet-
ter, using the tools from reactive systems design. To do
this, I wrote a blog post about a dog poop prediction
startup (http://mng.bz/9YK8; see figure).

 The post got a surprisingly large and serious
response from a wide range of people. I learned two
things from that response:

■ I wasn’t the only one interested in coming up with a principled approach to
building machine learning systems.

■ People really enjoyed talking about machine learning in terms of cartoon animals.

Those insights led to the book you’re reading. In this book, I try to cover a range of
issues you’re likely to encounter in building real-world machine learning systems that
have to keep customers happy. My focus is on all the stuff you won’t find in other
books. I’ve tried to make the book as broad as possible, in the hopes of covering the
full responsibilities of the modern data scientist or engineer. I explore how to use gen-
eral principles and techniques to break down the seemingly unique problems of a
given component of a machine learning system. My goal is to be as comprehensive as
possible in my coverage of machine learning system components, but that means I
can’t be comprehensive on huge topics like model learning algorithms and distrib-
uted systems. Instead, I’ve designed examples that provide you with experience build-
ing various components of a machine learning system.

Poop prediction

PREFACExiv

 I firmly believe that to build a truly powerful machine learning system, you must
take a system-level view of the problem. In this book, I provide that high-level perspec-
tive and then help you build skills around each of the key components in that system.
I learned through my experience as a technical lead and manager that understanding
the entire machine learning system and the composition of its components is one of
the most important skills a developer of machine learning systems can have. So, the
book tries to cover all the different pieces it takes to build up a powerful, real-world
machine learning system. Throughout, we’ll take the perspective of teams shipping
sophisticated machine learning systems for live users. So, we’ll explore how to build
everything in a machine learning system. It’s a big job, and I’m excited that you’re
interested in taking it on.

xv

acknowledgments
A book is the opposite of an academic paper when it comes to attribution. In an aca-
demic paper, everyone who ever even grabbed lunch at the lab can get their name on
the paper; but in a book, for some reason, we only put one or two names on the cover.
But it’s not that simple to pull a book together; lots of people are involved. Here are
all the people who made this book happen.

 As I mentioned in the preface, the book grew out of (believe it or not) a blog post
about dog poop (http://mng.bz/9YK8). I’m immensely grateful to the serious and
accomplished people who took my cartoons about dog poop seriously enough to pro-
vide useful feedback: Roland Kuhn, Simon Chan, and Sean Owen.

 In the early days of the book, the members of the reactive study group and the data
team at Intent Media were invaluable in helping me understand where I was trying to
take these ideas about building machine learning systems. I’m also indebted to
Chelsea Alburger from Intent Media, who provided great early art direction for the
book’s visuals.

 Thanks go to the team at Manning who took my original ideas and helped them
become a book: Frank Pöhlmann, who suggested that there might be a book in this
reactive machine learning stuff; Susanna Kline, who dragged me kicking and scream-
ing through the dark forest; Kostas Passadis, who kept me from looking like a com-
plete fool; and Marjan Bace, who green-lit the whole mad endeavor. I also want to
thank the technical peer reviewers, led by Aleksandar Dragosavljevic: David Andrze-
jewski, Jose Carlos Estefania Aulet, Óscar Belmonte-Fernández, Tony M. Dubitsky,
Vipul Gupta, Jason Hales, Massimo Ilario, Shobha Iyer, Shanker Janakiraman, Jon

ACKNOWLEDGMENTSxvi

Lehto, Anuja Kelkar, Alexander Myltsev, Tommy O’Dell, Jean Safar, José San Leandro,
Jeff Smith, Chris Snow, Ian Stirk, Fabien Tison, Jeremy Townson, Joseph Wang, and
Jonathan Woodard.

 Once the book really got rolling, the team at x.ai were immensely helpful in pro-
viding a test lab for various ideas and supporting me as I took the book’s ideas on the
road in the form of talks. I thank you, Dennis Mortensen, Alex Poon, and everyone on
the tech team.

 Also, thanks go to anyone who came out to hear one of the talks associated with
the book at conferences and meetups. All the feedback provided, in person and
online, was instrumental to helping me understand how the material was evolving.

 Finally, I thank my illustrator, yifan, without whom the book wouldn’t have been
possible. You’ve brought to life my vision of cartoon animals who do machine learn-
ing, and now I’m excited to be able to share it with the world.

 P.S. Thanks to my muse: nom nom, the data dog. Who’s a good little machine
learner? You are!

xvii

about this book
This book serves two slightly different audiences. First, it serves software engineers
who are interested in machine learning but haven’t built many real-world machine
learning systems. I presume such readers want to put their skills into practice by actu-
ally building something with machine learning. The book is different from other
books you may have picked up on machine learning. In it, you’ll find techniques
applicable to building whole production-grade systems, not just naive scripts. We’ll
explore the entire range of possible components you might need to implement in a
machine learning system, with lots of hard-won tips about common design pitfalls.
Along the way, you’ll learn about the various jobs of a machine learning system, in the
context of implementing systems that fulfill those needs. So, if you don’t have a lot of
background in machine learning, don’t worry that you’ll have to wade through pages
of math before you get to build things. The book will have you coding all the way
through, often relying on libraries to handle the more complex implementation con-
cerns like model learning algorithms and distributed data processing.

 Second, this book serves data scientists who are interested in the bigger picture of
machine learning systems. I presume that such readers know the concepts of machine
learning but may only have implemented simple machine learning functionality (for
example, scripts over files on a laptop). For such readers, the book may introduce you
to a range of concerns that you’ve never before considered part of the work of
machine learning. In places, I’ll introduce vocabulary to name components of a sys-
tem that are often neglected in academic machine learning discussions, and then I’ll
show you how to implement them. Although the book does get into some powerful

ABOUT THIS BOOKxviii

programming techniques, I don’t presume that you have deep experience in software
engineering, and I’ll introduce all concepts beyond the very basic, in context.

 For either type of reader, I assume that you have some interest in reactive systems
and how this approach can be used to build better machine learning systems. The
reactive perspective on system design underpins every part of the book, so you’ll
spend a lot of time examining the properties your system has or doesn’t have, often
presuming that real-world problems like server outages and network partitions will
occur in your system.

 Concretely, this focus on reactive systems means the book contains a fair bit of
material on distributed systems and functional programming. The goal of unifying
these concerns with the task of building machine learning systems is to give you tools
to solve some of the hardest problems in technology today. Again, if you don’t have a
background in distributed systems or functional programming, don’t worry: I’ll intro-
duce this material in context with the appropriate motivation. Once you see tools like
Scala, Spark, and Akka in action, I hope it will become clear to you how helpful they
can be in solving real-world machine learning problems.

How this book is organized
This book is organized into three parts. Part 1 introduces the overall motivation of the
book and some of the tools you’ll use:

■ Chapter 1 introduces machine learning, reactive systems, and the goals of reac-
tive machine learning.

■ Chapter 2 introduces three of the technologies the book uses: Scala, Spark, and
Akka.

Part 2 forms the bulk of the book. It proceeds component by component, helping you
to deeply understand all the things a machine learning system must do, and how you
can do them better using reactive techniques:

■ Chapter 3 discusses the challenges of collecting data and ingesting it into a
machine learning system. As part of that, it introduces various concepts around
handling uncertain data. It also goes into detail about how to persist data, focus-
ing on properties of distributed databases.

■ Chapter 4 gets into how you can extract features from raw data and the various
ways in which you can compose this functionality.

■ Chapter 5 covers model learning. You’ll implement your own model learning
algorithms and use library implementations. It also covers how to work with
model learning algorithms from other languages.

■ Chapter 6 covers a range of concerns related to evaluating models once they’ve
been learned.

■ Chapter 7 shows how to take learned models and make them available for use.
In the service of this goal, this chapter introduces Akka HTTP, microservices,
and containerization via Docker.

ABOUT THIS BOOK xix

■ Chapter 8 is all about using machine learned models to act on the real world. It
also introduces an alternative to Akka HTTP for building services: http4s.

Finally, part 3 introduces a few more concerns that become relevant once you’ve built
a machine learning system and need to keep it running and evolve it into something
better:

■ Chapter 9 shows how to build Scala applications using SBT. It also introduces
concepts from continuous delivery.

■ Chapter 10 shows how to build artificially intelligent agents of various levels of
complexity as an example of system evolution. It also covers more techniques
for analyzing the reactive properties of a machine learning system.

How should you read this book? If you have good experience in Scala, Spark, and
Akka, then you might skip chapter 2. The heart of the book is the journey through the
various system components in part 2. Although they’re meant to stand alone as much
as possible, it will probably be easiest to follow the flow of the data through the system
if you proceed in order from chapter 3 through chapter 8. The final two chapters are
separate concerns and can be read in any order (after you’ve read part 2).

Code conventions and downloads
This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The code used in the book can be found on the book’s website, www.manning .com/
books/machine-learning-systems, and in this Git repository: http://github.com/
jeffreyksmithjr/reactive-machine-learning-systems.

Book forum
Purchase of Machine Learning Systems includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go to
https://forums.manning.com/forums/machine-learning-systems. You can also learn
more about Manning’s forums and the rules of conduct at https://forums.manning
.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of

ABOUT THIS BOOKxx

the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Other online resources
■ For more information about Scala and pointers to various resources on how to

learn the language, the language website is the best place to start: www.scala-
lang.org.

■ The Spark project site contains excellent documentation and pointers to other
useful Spark-related resources: http://spark.apache.org.

■ Similarly, the Akka project website has invaluable documentation and links to
other useful resources: http://akka.io.

■ The Reactive Manifesto was the starting point for the recent focus on reactive
systems: www.reactivemanifesto.org.

■ I maintain a site related to the book. It gathers together talks and other resources
about reactive machine learning: http://reactivemachinelearning.com.

xxi

about the author
Jeff Smith builds powerful machine learning systems. For the past
decade, he has been working on building data science applications,
teams, and companies as part of various teams in New York,
San Francisco, and Hong Kong. He blogs (https://medium.com/
@jeffksmithjr), tweets (jeffksmithjr), and speaks (www.jeffsmith.tech/
speaking) about various aspects of building real-world machine learn-
ing systems.

xxii

about the cover illustration
The figure on the cover of Machine Learning Systems is captioned “Japanese Infantry—
Musician.” The illustration is taken from Auguste Wahlen’s Manners, Customs and Cos-
tumes of All Peoples of the World, a four-volume set published in Brussels by the Librairie
Historique in 1843. The books contain scarce and beautiful images: the costumes of the
world are finely illustrated with a wonderful series of highly colored full-page plates.

 Wahlen, whose real name was Jean-François-Nicolas Loumyer (1801–1875), was an
archivist for the heraldic authority of Belgium. Fascination with faraway lands and
travel for pleasure were relatively new phenomena in the early nineteenth century,
and collections such as this one were popular, introducing both the tourist as well as
the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Wahlen’s volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life—or a more varied and interesting intellectual and technical life.

 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Wahlen’s pictures.

Part 1

Fundamentals of reactive
machine learning

R eactive machine learning brings together several different areas of tech-
nology, and this part of the book is all about making sure you’re sufficiently ori-
ented in all of them. Throughout this book, you’ll be looking at and building
machine learning systems, starting with chapter 1. If you don’t have experience
with machine learning, it’s important to be familiar with some of the basics of
how it works. You’ll also get a flavor for all of the problems with how machine
learning systems are often built in the real world. With this knowledge in hand,
you’ll be ready for another big topic: reactive systems design. Applying the tech-
niques of reactive systems design to the challenges of building machine learning
systems is the core topic of this book.

 After you’ve had an overview of what you’re going to do in this book, chap-
ter 2 focuses on how you’ll do it. The chapter introduces three technologies that
you’ll use throughout the book: the Scala programming language, the Akka
toolkit, and the Spark data-processing library. These are powerful technologies
that you can only begin to learn in a single chapter. The rest of the book will go
deeper into how to use them to solve real problems.

3

Learning reactive
 machine learning

This book is all about how to build machine learning systems, which are sets of soft-
ware components capable of learning from data and making predictions about the
future. This chapter discusses the challenges of building machine learning systems
and offers some approaches to overcoming those challenges. The example we’ll
look at is of a startup that tries to build a machine learning system from the ground
up and finds it very, very hard.

 If you’ve never built a machine learning system before, you may find it challenging
and a bit confusing. My goal is to take some of the pain and mystery out of this process.
I won’t be able to teach you everything there is to know about the techniques of

This chapter covers
 Introducing the components of machine learning

systems

 Understanding the reactive systems design
paradigm

 The reactive approach to building machine
learning systems

4 CHAPTER 1 Learning reactive machine learning

machine learning; that would take a mountain of books. Instead, we’ll focus on how to
build a system that can put the power of machine learning to use.

 I’ll introduce you to a fundamentally new and better way of building machine
learning systems called reactive machine learning. Reactive machine learning represents
the marriage of ideas from reactive systems and the unique challenges of machine
learning. By understanding the principles that govern these systems, you’ll see how to
build systems that are more capable, both as software and as predictive systems. This
chapter will introduce you to the motivating ideas behind this approach, laying a
foundation for the techniques you’ll learn in the rest of the book.

1.1 An example machine learning system
Consider the following scenario. Sniffable is “Facebook for dogs.” It’s a startup based
out of a dog-filled loft in New York. Using the Sniffable app, dog owners post pictures
of their dogs, and other dog owners like, share, and comment on those pictures. The
network was growing well, and the team felt there might be a meteoric opportunity
here. But if Sniffable was really going to take off, it was clear that they’d have to build
more than just the standard social-networking features.

1.1.1 Building a prototype system

Sniffable users, called sniffers, are all about promoting their specific dog. Many sniffers
hope that their dog will achieve canine celebrity status. The team had an idea that what
sniffers really wanted were tools to help make their posts, called pupdates, more viral.
Their initial concept for the new feature was a sort of competitive intelligence tool for
the canine equivalent of stage moms, internally known as den mothers. The belief was that
den mothers were taking many pictures of their dogs and were trying to figure out which
picture would get the biggest response on Sniffable. The team intended the new tool to
predict the number of likes a given pupdate might get, based on the hashtags used. They
named the tool Pooch Predictor. It was their hope that it would engage the den mothers,
help them create viral content, and grow the Sniffable network as a whole.

 The team turned to their lone data scientist to get this product off the ground.
The initial spec for the minimal viable product was pretty fuzzy, and the data scientist
was already a pretty busy guy—he was the entire data science department, after all.
Over the course of several weeks, he stitched together a system that looked something
like figure 1.1.

Figure 1.1
Pooch
Predictor 1.0
architecture

5An example machine learning system

The app already sent all raw user-interaction data to the application’s relational data-
base, so the data scientist decided to start building his model with that data. He wrote
a simple script that dumped the data he wanted to flat files. Then he processed that
interaction data using a different script to produce derived representations of the
data, the features, and the concepts. This script produced a structured representation
of a pupdate, the number of likes it got, and other relevant data such as the hashtags
associated with the post. Again, this script just dumped its output to flat files. Then he
ran his model-learning algorithm over his files to produce a model that predicted
likes on posts, given the hashtags and other data about the post.

 The team was thoroughly amazed by this prototype of a predictive product, and
they pushed it through the engineering roadmap to get it out the door as soon as pos-
sible. They assigned a junior engineer the job of taking the data scientist’s prototype
and getting it running as a part of the overall system. The engineer decided to embed
the data scientist’s model directly into the app’s post-creation code. That made it easy
to display the predicted number of likes in the app.

 A few weeks after Pooch Predictor went live, the data scientist happened to notice
that the predictions weren’t changing much, so he asked the engineer about the
retraining frequency of the modeling pipeline. The engineer had no idea what the
data scientist was talking about. They eventually figured out that the data scientist had
intended his scripts to be run on a daily basis over the latest data from the system.
Every day there should be a new model in the system to replace the old one. These
new requirements changed how the system needed to be constructed, resulting in the
architecture shown in figure 1.2.

 In this version of Pooch Predictor, the scripts were run on a nightly basis,
scheduled by cron. They still dumped their intermediate results to files, but now
they needed to insert their models into the application’s database. And now the
backend server was responsible for producing the predictions displayed in the app.
It would pull the model out of the database and use it to provide predictions to the
app’s users.

Figure 1.2 Pooch
Predictor 1.1 architecture

6 CHAPTER 1 Learning reactive machine learning

This new system was definitely better than the initial version, but in its first several
months of operation, the team discovered several pain points with it. First of all,
Pooch Predictor wasn’t very reliable. Often something would change in the data-
base, and one of the queries would fail. Other times there would be high load on
the server, and the modeling job would fail. This was happening more and more as
both the size of the social network and the size of the dataset used by the modeling
system increased. One time, the server that was supposed to be running the data-
processing job failed, and all the relevant data was lost. These sorts of failures were
hard to detect without building up a more sophisticated monitoring and alerting
infrastructure. But even if someone did detect a failure in the system, there wasn’t
much that could be done other than kick off the job again and hope it succeeded
this time.

 Besides these big system-level failures, the data scientist started to find other prob-
lems in Pooch Predictor. Once he got at the data, he realized that some of the features
weren’t being correctly extracted from the raw data. It was also really hard to under-
stand how a change to the features that were being extracted would impact modeling
performance, so he felt a little blocked from making improvements to the system.

 There was also a major issue that ended up involving the entire team. For a period
of a couple of weeks, the team saw their interaction rates steadily trend down with no
real explanation. Then someone noticed a problem with Pooch Predictor while test-
ing on the live version of the app. For the pupdates of users who were based outside
the United States, Pooch Predictor would always predict a negative number of likes. In
forums around the internet, disgruntled users were voicing their rage at having the
adorableness of their particular dog insulted by the Pooch Predictor feature. Once
the Sniffable team detected the issue, they were able to quickly figure out that it was a
problem with the modeling system’s location-based features. The data scientist and
engineer came up with a fix, and the issue went away, but only after having their cred-
ibility seriously damaged among sniffers located abroad.

 Shortly after that, Pooch Predictor ran into more problems. It started with the data
scientist implementing more feature-extraction functionality in an attempt to improve
modeling performance. To do that, he got the engineer’s help to send more data
from the user app back to the application database. On the day the new functionality
rolled out, the team saw immediate issues. For one thing, the app slowed down dra-
matically. Posting was now a very laborious process—each button tap seemed to take
several seconds to register. Sniffers became seriously irritated with these issues. Things
went from bad to worse when Pooch Predictor began to cause yet more problems with
posting. It turned out that the new functionality caused exceptions to be thrown on
the server, which led to pupdates being dropped.

 At this point, it was all hands on deck in a furious effort to put out this fire. They
realized that there were two major issues with the new functionality:

7Reactive machine learning

 Sending the data from the app back to the server required a transaction. When
the data scientist and engineer added more data to the total amount of data
being collected for modeling, this transaction took way too long to maintain
reasonable responsiveness within the app.

 The prediction functionality within the server that supported the app didn’t
handle the new features properly. The server would throw an exception every
time the prediction functionality saw any of the new features that had been
added in another part of the application.

After understanding where things had gone wrong, the team quickly rolled back all of
the new functionality and restored the app to a normal operational state.

1.1.2 Building a better system

Everyone on the team agreed that something was wrong with the way they were build-
ing their machine learning system. They held a retrospective to figure out what went
wrong and determine how they were going to do better in the future. The outcome
was the following vision for what a Pooch Predictor replacement needed to look like:

 The Sniffable app must remain responsive, regardless of any other problems
with the predictive system.

 The predictive system must be considerably less tightly coupled to the rest of
the systems.

 The predictive system must behave predictably regardless of high load or errors
in the system itself.

 It should be easier for different developers to make changes to the predictive
system without breaking things.

 The code must use different programming idioms that ensure better perfor-
mance when used consistently.

 The predictive system must measure its modeling performance better.
 The predictive system should support evolution and change.
 The predictive system should support online experimentation.
 It should be easy for humans to supervise the predictive system and rapidly cor-

rect any rogue behavior.

1.2 Reactive machine learning
In the previous example, it seems like the Sniffable team missed something big, right?
They built what initially looked like a useful machine learning system that added value
to their core product. But all the issues they experienced in getting there obviously
had a cost. Production issues with their machine learning system frequently pulled the
team away from work on improvements to the capability of the system. Even though
they had a bunch of smart people in the room thinking hard about how to predict the
dynamics of dog-based social networking, their system repeatedly failed at its mission.

8 CHAPTER 1 Learning reactive machine learning

1.2.1 Machine learning

Building machine learning systems that do what they’re supposed to do is hard, but
not impossible. In our example story, the data scientist knew how to do machine learn-
ing. Pooch Predictor totally worked on his laptop; it made predictions from data. But
the data scientist wasn’t thinking of machine learning as an application—he only
understood machine learning as a technique. Pooch Predictor didn’t consistently pro-
duce trustable, accurate predictions. It was a failure both as a predictive system and as
a piece of software.

 This book will show you how to build machine learning systems that are just as awe-
some as the best web and mobile applications. But understanding how to build these
systems will require you to think of machine learning as an application, and not
merely as a technique. The systems that we’ll build won’t fail at their missions.

 In the next section, we’ll get into the reactive approach to building machine learning
systems. But first I want to clarify what a machine learning system is and how it differs
from merely using machine learning as a technique. To do so, I’ll have to introduce
some terminology. If you have experience with machine learning, some of this might
seem basic, but bear with me. Terms related to machine learning can be pretty incon-
sistently defined and used, so I want to be explicit about what we’re talking about.

At its simplest, machine learning is a technique for learning from and making predic-
tions on data. At a minimum, to do machine learning, you must take some data, learn
a model, and use that model to make predictions. Using this definition, we can imag-
ine an even cruder form of the Pooch Predictor example. It could be a program that
queries the application database for the most popular breed of dog (French Bulldogs,
it turns out) and tells the app to say that all posts containing a French Bulldog will get
a lot of likes.

 That minimal definition of machine learning leaves out a lot of relevant detail.
Most real-world machine learning systems need to do a lot more than just that. They
usually need to have all the components, or phases, shown in figure 1.3.

 Starting at the beginning, a machine learning system must collect data from the
outside world. In the Pooch Predictor example, the team was trying to skip this con-
cern by using the data that their application already had. No doubt about it, that
approach was quick, but it tightly coupled the Sniffable application data model to the

Functionality vs. implementation
This brief introduction is only focused on ensuring that you’re sufficiently oriented in
terms of the functionality of a machine learning system. This book is focused on the
implementation of machine learning systems, not on the fundamentals of machine
learning itself. Should you find yourself needing a better introduction to the techniques
and algorithms used in machine learning, I recommend reading Real-World Machine
Learning by Henrik Brink, Joseph W. Richards, and Mark Fetherolf (Manning, 2016).

9Reactive machine learning

Pooch Predictor data model. How to collect and persist data for a machine learning
system is a large and important topic, so I’ll spend all of chapter 3 showing you how to
set up your system for success.

 Once the system has data in it, that data is rarely ready to send off to a machine
learning algorithm. Most machine learning algorithms are applied to derived repre-
sentations of the raw data, called instances. Fig-
ure 1.4 shows the parts of an instance in a
common syntax (LIBSVM).

 Many different syntaxes can be used to
express instances, so we’re not going to worry
too much about the specifics of any particular
syntax. However they’re expressed, instances
are always made up of the same components.

 Features are meaningful data points derived
from raw data related to the entity being pre-
dicted on, at the time you’re trying to make a prediction. A Sniffable example of a fea-
ture would be the number of friends a given dog has. In figure 1.4, features are
expressed using a unique ID field and feature value. Feature number 978, which might
represent the sniffer’s proportion of friends that are male dogs, has a value of 0.24. Typ-
ically, a machine learning system will extract many features from the raw data available
to it. The feature values for a given instance are collectively called a feature vector.

 A concept is the thing that the system is trying to predict. In the context of Pooch
Predictor, a concept would be the number of likes a given post receives. When a con-
cept is discrete (not continuous), it can be called a class label, and you’ll often see just
the word label used in the relevant parts of machine learning libraries, such as MLlib,
which we’ll use in this book.

 Only some sorts of machine learning problems involve having concepts available
in the form of class labels. This sort of machine learning context is known as supervised
learning, and most of the material in this book is focused on this type of machine
learning problem, although reactive machine learning could be applied to unsuper-
vised learning problems as well.

Figure 1.3 Phases of machine learning

Figure 1.4 The structure of an instance

10 CHAPTER 1 Learning reactive machine learning

 Defining and implementing the best features and concepts to represent the prob-
lem you’re trying to solve make up an enormous portion of the work of real-world
machine learning. From an application perspective, these tasks are the beginning of
your data pipeline. Constructing pipelines that do this job reliably, consistently, and
scalably requires a principled approach to application architecture and programming
style. Chapter 4 is devoted to discussing the reactive approach to this part of machine
learning systems under the banner of feature generation.

 Using the data prepared as just described, you’re now ready to learn a model. You
can think of a model as a program that maps from features to predicted concepts, as
shown in the simple Scala implementation in the following listing.

def genericModel(f: FeatureVector[RawData]): Prediction[Concept] = ???

Learning models occurs during the latter half of the data pipeline. A model produced
by Pooch Predictor would be a program that takes as input the feature representation
of the hashtag data and returns the predicted number of likes that a given pupdate
might receive, as shown in the following listing.

def poochPredictorModel(f: FeatureVector[Hashtag]): Prediction[Like] = ???

During this same phase of the pipeline, you’ll need to begin to address several different
types of uncertainty that crop up in model building. As a result, the model-learning
phase of the pipeline is concerned with more than just learning models. In chapter 5,
I discuss the various concerns that you’ll need to consider in the model-learning sub-
system of a machine learning system.

 Next, you’ll need to take this model and make it useful by publishing it. Model pub-
lishing means making the model program available outside of the context it was
learned in, so that it can make predictions on data it hasn’t seen before. It’s easy to
gloss over the difficulties that come up in this part of a machine learning system, and
the Sniffable team largely skipped it in their original implementation. They didn’t
even set up their system to retrain the model on a regular basis. Their next approach
at implementing model retraining also ran into difficulty, causing their models to be
out of sync with their feature extractors. There are better ways of doing this (hint:
think immutability), and I discuss them in chapter 6.

 Finally, you’ll need to implement functionality for your learned model to be used in
predicting concepts from new instances, which I call responding later in the book. This
is ultimately where the rubber meets the road in a machine learning system, and in the
Pooch Predictor system it was frequently where the car burst into flames. Given that
team Sniffable had never really built a machine learning system like this before, it’s not

Listing 1.1 A simple model

Listing 1.2 A Pooch Predictor model

11Reactive machine learning

surprising that there were some pain points where their ideas met harsh reality. Some
of their problems stemmed from treating their predictive system like a transaction busi-
ness application that needed to record a purchase. An approach that relies on strong
consistency guarantees doesn’t work for modern distributed systems, and it’s out of sync
with the pervasive and intrinsic uncertainty in a machine learning system. Other prob-
lems the Sniffable team experienced had to do with not thinking about their system in
dynamic terms. machine learning systems must evolve, and they must support parallel
tracks for that evolution through experimentation capabilities. Finally, there wasn’t
much functionality to support handling requests for predictions.

 The Sniffable team wasn’t unusual in their haphazard approach to architecture.
Many machine learning systems look a lot like the architecture in figure 1.5.

There’s nothing wrong with starting with something so simple. But this approach
lacks many system components that will eventually be needed, and the ones that are
implemented have poor component boundaries. Moreover, not a lot of thought was
given to the various properties this system must have, should it ever serve more than a
few users. It is, in a word, naive.

 This book introduces an approach to building machine learning systems that is
anything but naive. The approach is based on a lot of real-world experiences with the
challenges of machine learning systems. The sorts of systems that we’ll look at in this
book are non-trivial and often have complex architectures. At a general level, they will
conform to the approach shown in figure 1.6.

 It may not be obvious why we need to build machine learning systems using such a
complex architecture, but I beg your patience. In each chapter, I’ll show you what
challenges this portion of the system must address and how a more reactive approach
to machine learning will work better. To do that, I should probably give you more
background on what reactive systems are.

1.2.2 Reactive systems

Now that you understand a bit more about what machine learning systems are, I want
to give you an overview of some of the ideas and approaches that we’ll use to build
successful ones. We’ll begin with the reactive systems paradigm. Reactive systems are
defined by four traits and three strategies. The paradigm as a whole is a way of codify-
ing an approach to building systems that can serve modern user expectations for
things like interactivity and availability.

Figure 1.5 A simplistic machine learning system

12 CHAPTER 1 Learning reactive machine learning

Figure 1.6 A reactive machine learning system

13Reactive machine learning

TRAITS OF REACTIVE SYSTEMS

Reactive systems privilege four traits (see figure 1.7).

First and most importantly, reactive systems are responsive, meaning they consistently
return timely responses to users. Responsiveness is the crucial foundation upon which
all future development efforts will be built. If a system doesn’t respond to its users,
then it’s useless. Think of the Sniffable team causing a massive slowdown in the Sniffa-
ble app due to the poor responsiveness of their machine learning system.

 Supporting that goal of responsiveness, reactive systems must be resilient; they need
to maintain responsiveness in the face of failure. Whether the cause is failed hard-
ware, human error, or design flaws, software always breaks, as the Sniffable team has
discovered. Providing some sort of acceptable response even when things don’t go as
planned is a key part of ensuring that users view a system as being responsive. It
doesn’t matter that an app is very fast when it’s not broken if it’s broken half the time.

 Reactive systems must also be elastic; they need to remain responsive despite vary-
ing loads. The idea of elasticity isn’t exactly the same as scalability, although the two
are similar. Elastic systems should respond to increases or decreases in load. The Snif-
fable team saw this when their traffic ramped up and the Pooch Predictor system
couldn’t keep up with the load. That’s exactly what a lack of elasticity looks like.

 Finally, reactive systems are message-driven; they communicate via asynchronous,
non-blocking message passing. The message-passing approach is in contrast with direct
intraprocess communication or other forms of tight coupling. It’s easy to understand
how a more explicit approach to ensuring loose coupling might solve some of the
issues in the Sniffable example. A loosely coupled system organized around message
passing can make it easier to detect failure or issues with load. Moreover, a design with
this trait helps contain any of the effects of errors to just messages about bad news,

Figure 1.7 The traits
of reactive systems

14 CHAPTER 1 Learning reactive machine learning

Figure 1.8 Reactive strategies

rather than flaming production issues that need to be immediately addressed, as they
were in Pooch Predictor.

 The reactive approach could certainly be applied to the problems the Sniffable
team were having with their machine learning system. The four principles represent a
coherent and complete approach to system design that makes for fundamentally bet-
ter systems. Such systems fulfill their requirements better than naively designed sys-
tems, and they’re more fun to work on. After all, who wants to fight fires when you
could be shipping awesome new machine learning functionality to loyal sniffers?

 These traits certainly sound nice, but they’re not much of a plan. How do you
build a system that actually has these traits? Message passing is part of the answer, but
it’s not the whole story. machine learning systems, as you’ve seen, can be difficult to
get right. They have unique challenges that will likely need unique solutions that
don’t appear in traditional business applications.

REACTIVE STRATEGIES

A key part of how we’ll build a reactive
machine learning system in this book
is by using the three reactive strategies
illustrated in figure 1.8.

 First, reactive systems use replication.
They have the same component exe-
cuting in more than one place at the
same time. More generally, this means
that data, whether at rest or in motion, should be redundantly stored or processed.

 In the Sniffable example, there was a time when the server that ran the model-
learning job failed, and no model was learned. Clearly, replication could have helped
here. Had there been two or more model-learning jobs, the failure of one job would
have had less impact. Replication may sound wasteful, but it’s the beginning of a solu-
tion. As you’ll see in chapters 4 and 5, you can build replication into your modeling
pipelines using Spark. Rather than requiring you to always have two pipelines execut-
ing, Spark gives you automatic, fine-grained replication so that the system can recover
from failure. This book focuses on the use of higher-level tools like Spark to manage
the challenges of distributed systems. By relying on these tools, you can easily use rep-
lication in every component of your machine learning system.

 Next, reactive systems use containment to prevent the failure of any single compo-
nent of the system from affecting any other component. The term containment might
get you thinking about specific technologies like Docker and rkt, but this strategy isn’t
about any one implementation. Containment can be implemented using many differ-
ent systems, including homegrown ones. The point is to prevent the sort of cascading
failure we saw in Pooch Predictor, and to do so at a structural level.

 Consider the issue with Pooch Predictor where the model and the features were
out of sync, resulting in exceptions during model serving. This was only a problem
because the model-serving functionality wasn’t sufficiently contained. Had the model

15Reactive machine learning

been deployed as a contained service
communicating with the Sniffable appli-
cation server via message passing, there
would have been no way for this failure
to propagate as it did. Figure 1.9 shows
an example of this architecture.

 Lastly, reactive systems rely on the
strategy of supervision to organize com-
ponents. When implementing systems
using this strategy, you explicitly identify
the components that could fail and make sure that some other component is responsi-
ble for their lifecycles. The strategy of supervision gives you a point of control, where
you can ensure that the reactive traits are being achieved by the true runtime behavior
of your system.

 The Pooch Predictor system had no system-level supervision. This unfortunate
omission left the Sniffable team scrambling whenever something went wrong with the
system. A better approach would have been to build supervision directly into the sys-
tem itself, along the lines of figure 1.10.

In this structure, the published models are observed by the model supervisor. Should
their behavior deviate from acceptable bounds, the supervisor would stop sending
them messages requesting predictions. In fact, the model supervisor could even com-
pletely destroy a model it knows to be bad, making the system potentially self-healing.
I’ll begin discussing how you can implement model supervision in chapters 6 and 7,
and we’ll continue exploring powerful applications of the strategy of supervision
throughout the remainder of the book.

1.2.3 Making machine learning systems reactive

With some understanding about reactive systems, I can begin discussing how we can
apply these ideas to machine learning systems. In a reactive machine learning system,
we still want our system to have all the same traits as a reactive system, and we can use
all the same strategies. But we can do more to address the unique characteristics of a

Figure 1.10 A supervisory
architecture

Figure 1.9 A contained model-serving
architecture

16 CHAPTER 1 Learning reactive machine learning

machine learning system. So far, I’ve explained a lot of infrastructural concerns, but I
haven’t yet shown you how this enables new predictive capabilities. Ultimately, a reactive
machine learning system gives you the ability to deliver value through ever better pre-
dictions. That’s why reactive machine learning is worth understanding and applying.

 The reactive machine learning approach is based on two key insights into the char-
acteristics of data in a machine learning system: it is uncertain, and it is effectively
infinite. From those two insights, four strategies emerge, shown in figure 1.11, that
will help us build a reactive machine learning system.

 To begin, let’s think about how much data the Pooch Predictor system might need
to process. Ideally, with its new machine learning capabilities, Sniffable will take off
and see tons of traffic. But even if that doesn’t happen, there’s still no way of knowing
how many possible pupdates users might want to consider and thus send to the Pooch
Predictor system. Imagine having to predict every possible post that a sniffer might
make on Sniffable. Some posts would have big dogs; others, small ones. Some posts
would use filters, and others would be more natural. Some would be rich in hashtags,
and some wouldn’t have any annotations. Once you consider the impact of arbitrary
parameters on feature values, the range of possible data representations becomes lit-
erally infinite.

 It doesn’t matter precisely how much raw data Pooch Predictor ingests. We’ll
always assume that the amount of data is too much for one thread or one server. But
rather than give up in the face of this unbounded scope, reactive machine learning
employs two strategies to manage infinite data.

 First, it relies on laziness, also known as delay of execution, to separate the composi-
tion of functions to execute from their actual execution. Rather than being a bad
habit, laziness is a powerful evaluation strategy that can greatly improve the design of
data-intensive applications.

 By using laziness in the implementation of your machine learning system, you’ll
find that it’s much easier to conceive of the data flow in terms of infinite streams than
finite batches. This switch can have huge benefits for the responsiveness and utility of
your system. I show how laziness can be used to build machine learning pipelines in
chapter 4.

Figure 1.11 Reactive machine
learning data and strategies

17Reactive machine learning

Similarly, reactive machine learning systems deal with infinite data by expressing
transformations as pure functions. What does it mean for a function to be pure? First,
evaluating the function must not result in some sort of side effect, such as changing
the state of a variable or performing I/O. Additionally, the function must always
return the same value when given the same arguments. This latter property is referred
to as referential transparency. Writing machine learning code that maintains this prop-
erty can make implementations of mathematical transformations look and behave
quite similarly to their expression in math.

 Pure functions are a foundational concept in a style of programming known as
functional programming, which we’ll use throughout this book. At its heart, functional
programming is all about computing with functions. In functional code, functions can
be passed to other functions as arguments. Such functions are called higher-order func-
tions, and we’ll use this idiom throughout the code examples in this book. Functional
programming idioms like higher-order functions are a key part of what makes reactive
tools like Scala and Spark so powerful.

 The emphasis on the use of functional programming in this book isn’t merely sty-
listic. Functional programming is one of the most powerful tools for taming compli-
cated systems that need to reason about data, especially infinite data. The recent
increase in the popularity of functional programming has been largely driven by its
application to building big data infrastructure. Using the techniques of functional
programming, we’ll be able to get our system right and scale it to the next level. As I
discuss in chapters 4 and 6, pure functions can offer real solutions to the problems of
implementing feature extraction and prediction functionality.

 Next, let’s consider what Pooch Predictor knew about what was going on with Snif-
fable and its users. It had records of sniffers creating, viewing, and liking pupdates.
This knowledge came from the main application database. As we saw, the app would
sometimes lose sniffers’ efforts to like a particular pupdate, due to operational issues,
and this loss of data changed the concept that Pooch Predictor was built to learn. Sim-
ilarly, Pooch Predictor’s view of what feature values were seen at a given time was often
impeded by bugs in its code or in the main app’s code. This is all because uncertainty is
intrinsic and pervasive in a machine learning system.

 Machine learning models and the predictions they make are always approximate and
only useful in the aggregate. It wasn’t like Pooch Predictor knew exactly how many likes
a given pupdate might get. Even before making a prediction, a machine learning system
must deal with the uncertainty of the real world outside of the machine learning system.
For example, do sniffers using the hashtag #adorabull mean the same thing as sniffers
using the hashtag #adorable, or should those be viewed as different features?

 A truly reactive machine learning system incorporates this uncertainty into the
design of the system and uses two strategies to manage it: immutable facts and possible
worlds. It may sound strange to use facts to manage uncertainty, but that’s exactly what
we’re going to do. Consider the location that a sniffer is posting a pupdate from. One

18 CHAPTER 1 Learning reactive machine learning

way of recording this location data for later use in geographic features is to record the
exact location reported by the app, as in table 1.1.

But the location determined by the app at the time of the pupdate was uncertain; it
was just the result of a sensor reading on a phone, which has a very coarse level of pre-
cision. The sniffer may or may not have been in Washington Square Park. Moreover, if
a future feature tries to capture the distinct differences between East and West Green-
wich Village, this data model will give a precise but potentially inaccurate view of how
far to the east or west this pupdate came from.

 A richer, more accurate way of recording this data is to use the raw location read-
ing and the expected radius of uncertainty, as shown in table 1.2.

This revised data model can now represent immutable facts. This data can be written
once and never modified; it is written in stone. The use of immutable facts allows us to
reason about uncertain views of the world at specific points in time. This is crucial for
creating accurate instances and many other important data transformations in a
machine learning system. Having a complete record of all facts that occur over the
lifetime of the system also enables important machine learning, like model experi-
mentation and automatic model validation.

 To understand the other strategy for dealing with uncertainty, let’s consider a fairly
simple question: how many likes will pupdates about French Bulldogs get in the next
hour? To answer this question, let’s break it down into pieces.

 First, how many pupdates will be submitted in the next hour? There are multiple ways
of answering this question. We could just take the historical average rate—say, 6,500. But
the number of pupdates submitted varies over time, so we could also fit a line to the data
that looks something like figure 1.12. Using this model, we might expect 7,250 pupdates
in the next hour.

 Beyond that, we need to know how many likes these pupdates will receive. Again,
we could take a historical average, which would give us 23 likes per pupdate in this
case. Or we could use a model. That model would have to be applied to some recent
sample of data to get an idea of the likes that recent traffic has been getting. The
result of this model is that the average pupdate will receive 28 likes.

Table 1.1 Pupdate location data model

pupdate_id Location

123 Washington Square Park

Table 1.2 Revised pupdate location data model

pupdate_id Latitude Longitude Radius

123 40.730811 -73.997472 1.0

19Reactive machine learning

Now, we need to combine this information in some way. Table 1.3 shows the predic-
tions we could use in our final prediction.

We could decide to answer that the expected number of likes in the next hour is
6,500 x 23 = 149,500 using the historical values. Or we could decide to use the
machine-learned model and get a value of 7,250 x 28 = 203,300. We could even
decide to combine the historical number of pupdates with the model-based predic-
tion of likes per pupdate to get 6,500 x 28 = 182,000. These different views of our
uncertain data can be thought of as possible worlds.

 We don’t know which of these worlds we will ultimately find ourselves in during the
next hour of traffic on Sniffable, but we can make decisions with this information,
such as ensuring that the servers are prepared to handle more than 200,000 likes in
the next hour. Possible worlds will form the basis for the queries we’ll make of all the
uncertain data that is present in our machine learning system. There are limits to the
applicability of this strategy, because infinite data can produce infinite possible worlds.
But by building our data models and queries with the concept of possible alternative
worlds, we’ll be able to more effectively reason about the real range of potential out-
comes in our system.

 Using all the strategies that I’ve discussed, it’s easy to imagine the Sniffable team
refactoring the Pooch Predictor system into something much more powerful. The reac-
tive machine learning approach makes it possible to build a machine learning system

Table 1.3 Possible prediction values

Model type Pupdates Likes/Pupdate

Historical 6,500 23

Machine-learned 7,250 28

Figure 1.12 Model of likes by hour

20 CHAPTER 1 Learning reactive machine learning

that has fewer problems and allows for evolution and improvement. It’s definitely a dif-
ferent approach than we saw in the original Pooch Predictor example, and this
approach is grounded on a firmer footing. Reactive machine learning unites ideas from
distributed systems, functional programming, uncertain data, and other fields in a
coherent, pragmatic approach to building real-world machine learning systems.

1.2.4 When not to use reactive machine learning

It’s fair to ask whether all machine learning systems should be built using the reactive
approach. The answer is no.

 During the design and implementation of a machine learning system, it’s benefi-
cial to consider the principles of reactive machine learning. Machine learning prob-
lems by definition have to do with reasoning about uncertainty. Thinking in terms of
immutable facts and pure functions is a useful perspective for implementing any sort
of application.

 But the approach discussed in this book is a way to easily build sophisticated systems,
and some machine learning systems don’t need to be sophisticated. Some systems won’t
benefit from using a message-passing semantic that assumes several independently
executing processes. A research prototype is a perfect example of a machine learning
system that doesn’t need the powerful capabilities of a reactive machine learning
system. When you’re building a temporary system, I recommend bending or breaking
all the rules I lay out in this book. The prudent approach to building potentially
disposable machine learning systems is to make far more extreme compromises than in
the reactive approach. If you’re building such a temporary system, see my guide to
building machine learning systems at hackathons: http://mng.bz/981c.

Summary
 Even simple machine learning systems can fail.
 Machine learning should be viewed as an application, not as a technique.
 A machine learning system is composed of five components, or phases:

– The data-collection component ingests data from the outside world into the
machine learning system.

– The data-transformation component transforms raw data into useful derived
representations of that data: features and concepts.

– The model-learning component learns models from the features and concepts.
– The model-publishing component makes a model available to make predictions.
– The model-serving component connects models to requests for predictions.

 The reactive systems design paradigm is a coherent approach to building better
systems:
– Reactive systems are responsive, resilient, elastic, and message-driven.
– Reactive systems use the strategies of replication, containment, and supervi-

sion as concrete approaches for maintaining the reactive traits.

21Summary

 Reactive machine learning is an extension of the reactive systems approach that
addresses the specific challenges of building machine learning systems:
– Data in a machine learning system is effectively infinite. Laziness, or delay of

execution, is a way of conceiving of infinite flows of data, rather than finite
batches. Pure functions without side effects help manage infinite data by
ensuring that functions behave predictably, regardless of context.

– Uncertainty is intrinsic and pervasive in the data of a machine learning sys-
tem. Writing all data in the form of immutable facts makes it easier to reason
about views of uncertain data at points in time. Different views of uncertain
data can be thought of as possible worlds that can be queried across.

In the next chapter, I’ll introduce some of the technologies and techniques used to
build reactive machine learning systems. You’ll see how reactive programming tech-
niques allow you to deal with complex system dynamics without complex code. I’ll
also introduce two powerful frameworks, Akka and Spark, that you can use to build
incredibly sophisticated reactive systems easily and quickly.

23

Using reactive tools

To get ready to build full-scale reactive machine learning systems, you need to get
familiar with a few tools from the Scala ecosystem: Scala itself, Akka, and Spark. In
this book, we’ll write applications in Scala because it provides excellent support for
functional programming and has been used successfully in building reactive sys-
tems of all kinds. Sometimes, you’ll find that Akka can be useful as a tool for pro-
viding resilience and elasticity through its implementation of the actor model.
Other times, you’ll want to use Spark to build large-scale pipeline jobs like feature
extraction and model learning. In this chapter, you’ll just start to get familiar with
these tools, and beginning with chapter 3, I’ll show you how they can be used to
build the various components of a reactive machine learning system.

 These aren’t the only tools that you could use to build a reactive machine learning
system. Reactive machine learning is a set of ideas, not a specific implementation. But

This chapter covers
 Managing uncertainty with Scala

 Implementing supervision and fault tolerance
with Akka

 Using Spark and MLlib as frameworks for
distributed machine learning pipelines

24 CHAPTER 2 Using reactive tools

the technologies shown in this chapter are all very useful for reactive machine learning,
in large part because they were designed with strong support for reactive techniques.
Even though I’m going to introduce you to the specifics of how these tools work, you can
definitely apply these approaches to systems built in other languages using other tools.

 I’ll introduce you to this book’s toolchain in the context of one of the world’s most
crucial problems: finding the next breakout pop star. Howlywood Star is a canine reality
singing competition. Each week, unknown dogs from around the country sing in front
of a panel of three judges. Then, the viewers at home vote on which dog has what it
takes to be the next Howlywood Star. This voting mechanic is key to the runaway suc-
cess of the show. The audience tunes in each week as much for the competition as for
the singing.

 A suite of sophisticated apps support this audience participation dynamic, and
they’re what you’ll focus on in this chapter. You’ll work primarily on the challenges of
handling the voting functionality. There will be some tricky scenarios resulting from
the popularity and unpredictability of the competition. Once you’ve addressed today’s
votes, we’ll try to predict things about future voting patterns using machine learning.

2.1 Scala, a reactive language
In this book, all the examples are in Scala. If you haven’t used Scala before, don’t
worry. If you’re competent in Java or a similar mainstream language, you can quickly
learn enough Scala to begin to build powerful machine learning systems. It’s true that
Scala is a large and rich language that could take you quite a while to master. But
you’ll mostly be using the power of Scala, without having to write terribly sophisticated
code yourself. Rather than try to introduce you to all the amazing features in Scala,
this section focuses on the features of the language that support reactive program-
ming and reasoning about uncertainty.

 To get started with Scala programming, you’ll build some of the pieces of the voting
application for Howlywood Star. The application’s architecture is shown in figure 2.1.

Figure 2.1 Howlywood Star
voting application architecture

25Scala, a reactive language

Figure 2.2 Voting
results mobile app

Various user-facing mobile and web apps are responsible for
sending votes from the global Howlywood Star audience to
backend servers. The servers are responsible for receiving these
votes and forwarding them on to the application database.
Other visualization apps are then responsible for querying that
database and presenting the current results. These apps range
from sophisticated internal-analytics dashboards to simple
public-facing mobile apps like the one shown in figure 2.2.

 This system is very simple, but even a system as simple as
this has hidden complexity. Consider the following questions:

 How long will it take to record each vote?
 What will the server be doing while it waits for each vote

to be persisted?
 How can the visualization apps be kept as fresh as possible?
 What will happen if load increases dramatically?

Howlywood Star’s popularity has recently been exploding thanks to a lot of interest on
social media. This voting app needs to be ready for the frenzy of attention that the
upcoming Season 2 is expected to produce. When the audience latches on to the next
breakout star, it’s reasonable to expect that the voting app will be slammed with traffic.

 But you can’t know in advance how big that traffic spike will be. There’s a certain
amount of intrinsic uncertainty in trying to predict the future like that.

 Nevertheless, the voting app will have to be ready for that uncertain future. Thank-
fully, Scala has tools for handling uncertainty and reacting appropriately.

2.1.1 Reacting to uncertainty in Scala

Before we get into discussions of more-complex distributed systems, let’s discuss some
basic techniques you can use to manage uncertainty in Scala. Let’s begin with some
fairly naive code that will allow you to begin to explore the richness of Scala. Your ini-
tial implementation won’t represent production-grade Scala code, but rather will be a
basic exploration of how different object types work in Scala.

 In the following listing, you create a simple collection of Howlers and the number
of votes they currently have. Then, you try to retrieve the vote counts for a popular
Howler.

val totalVotes = Map("Mikey" -> 52, "nom nom" -> 105)

val naiveNomNomVotes: Option[Int] = totalVotes.get("nom nom")

Listing 2.1 A map of votes

The collection of
votes received
thus far

An option that must be “unwrapped”
to get the vote count

26 CHAPTER 2 Using reactive tools

This trivial example demonstrates Scala’s concept of an Option type. In this example,
the language will allow you to pass any string key to the map of votes, but it doesn’t
know whether anyone has voted for nom nom until executing the lookup. Option
types can be viewed as a way of encoding the intrinsic uncertainty in an operation.
They close over the possibility that a given operation may return a value, Some of a
given type, or None.

 Because Scala has already told you that there’s some uncertainty around the con-
tents of the vote map, you can now write code that handles the different possibilities.

def getVotes(howler: String) = {
totalVotes.get(howler) match {

case Some(votes) => votes
case None => 0

}
}

val nomNomVotes: Int = getVotes("nom nom")
val indianaVotes: Int = getVotes("Indiana")

This simple helper function uses pattern matching to express the two possibilities:
either you’ve received votes for a given Howler or you haven’t. In the latter case, that
means the correct number of votes is 0. This allows the type of the votes values to both
be Int, even though no one has yet voted for Indiana. Pattern matching is a language
feature used to encode what the possible values are that a given operation could pro-
duce. In this case, you’re expressing the possible cases that the value returned by the
get operation could match to. Pattern matching is a common and useful technique in
idiomatic Scala, which we’ll use throughout the book.

 Of course, this very simple form of uncertainty is so common that Scala gives you
facilities to address it within the collection. The helper function in listing 2.2 can be
eliminated by setting a default value on the votes map.

val totalVotesWithDefault = Map("Mikey" -> 52, "nom nom" -> 105)

➥ .withDefaultValue(0)

2.1.2 The uncertainty of time

Building on this line of thinking, let’s consider a more relevant form of uncertainty. If
the count of votes were stored on a different server than the one you’re on, then it
would take time to retrieve those votes. The following listing approximates that idea
using a random delay.

Listing 2.2 Handling no votes using pattern matching

Listing 2.3 Setting default values on maps

A function that handles the
possibility that no one may have
voted for a given dog yet

A pattern-match expression to
handle the two possibilitiesReturns

105
Returns 0

27Scala, a reactive language

def getRemoteVotes(howler: String) = {
Thread.sleep(Random.nextInt(1000))
totalVotesWithDefault(howler)

}

val mikeyVotes = getRemoteVotes("Mikey")

This sort of uncertainty is a big problem for the vote visualization app. Its server will
be doing nothing, just waiting, while that call is processed. You can imagine that won’t
help in the quest to achieve responsiveness at all times.

 The source of this performance problem is that the call to getRemoteVotes is syn-
chronous. The solution to this problem is to use a future, which will ensure that this call
is no longer made in a synchronous, blocking fashion. Using a future, you’ll be able to
return immediately from a remote call like this and collect the result later, once the
call has completed. The following listing shows how this can be done to answer the
question “Which Howler is currently the most popular?”

import scala.concurrent._
import ExecutionContext.Implicits.global

def futureRemoteVotes(howler: String)= Future {
getRemoteVotes(howler)

}

val nomNomFutureVotes = futureRemoteVotes("nom nom")
val mikeyFutureVotes = futureRemoteVotes("Mikey")
val indianaFutureVotes = futureRemoteVotes("Indiana")

val topDogVotes: Future[Int] = for {
nomNom <- nomNomFutureVotes
mikey <- mikeyFutureVotes
indiana <- indianaFutureVotes

} yield List(nomNom, mikey, indiana).max

topDogVotes onSuccess {
case _ => println("The top dog currently has" + topDogVotes + "votes.")

}

In this implementation, the three calls to the remote vote count collection are processed
concurrently. Creation of a future doesn’t block on the remote call, waiting for com-
pletion of the work. Instead, the creation of the future returns immediately, allowing for
the later concurrent processing. Using futures to abstract over time is a foundational

Listing 2.4 A remote “database”

Listing 2.5 Futures-based remote calls

A function that retrieves
the votes, but with varying
amounts of delay

Always returns 52, eventually

A function that
returns a future of
the count of votes

The creation of each of
these futures returns
immediately rather than
blocking on the remote call.

This syntax is called
a for expression.

A future that will
eventually contain the
maximum number of votes

This will execute once all values in the
for expression have been retrieved.

Prints “The top dog
currently has 105 votes.”

28 CHAPTER 2 Using reactive tools

Figure 2.3 Distribution of request times

technique that you’ll use repeatedly to scale up your reactive machine learning systems
for handling huge amounts of data and complex operational behavior.

 The response time of a given request to a remote data source might, on average,
be quite small. But with large amounts of data, it’s effectively guaranteed that some
response times won’t be close to the average. This is an outcome of basic statistics. In a
normally distributed dataset, there will be outliers. And in aggregation operations,
like the maximum votes calculation in list-
ing 2.5, the average request latency has no
effect on the total latency. Instead, the total
latency is entirely determined by the single
slowest request, as shown in figure 2.3.

 The amount of time it takes for that slowest
request is often called the tail latency. It’s a very
real problem in large-scale data-processing
systems of all kinds, including machine
learning systems. But now that you know tail
latency is a problem, you can use reactive
programming techniques to manage it.

val timeoutDuration = 500
val AverageVotes = 42

val defaultVotes = Future {
Thread.sleep(timeoutDuration)
AverageVotes

}

def timeOutVotes(howler: String) = Future.firstCompletedOf(
List(getRemoteVotes(howler), defaultVotes))

In this implementation, you accept that life isn’t perfect, and some remote calls may
exhibit unacceptable latency. Rather than pass that latency on to the user, you choose
to return a degraded response, the historical average number of votes. That number
isn’t literally accurate, but in this case it’s better than returning nothing at all. In a real
system, you may have several options for what to return as a degraded response. For
example, you may have another application to look this value up in, such as a cache.
That cache’s value may have gotten stale, but that degraded value might be more use-
ful than nothing at all. In other cases, you may want to encode retry logic. It’s up to
you to figure out what’s best for your application.

Listing 2.6 Futures-based timeouts

Amount of time allowed
before returning a valueHistorical

average
number
of votes

A future that will complete with
the average number of votes
after the timeout duration

A function to return the actual number of votes
or the default, should the remote call timeout

29Akka, a reactive toolkit

 You may not like planning to fail some of the time, and if so, I can understand your
misgivings. As engineers, we’re used to building systems that return perfectly correct
answers every time. But in machine learning systems, uncertainty is pervasive and
intrinsic. It turns out that the same is true of distributed systems as well. If we want our
systems to be reactive and responsive, we’re going to have to use tactics like these some
of the time.

 As you’ll see in chapter 5 and beyond, there are several machine learning–specific
scenarios where we need to fall back in some way on a less-than-perfect response. Pru-
dent risk-mitigation tactics like these will help us tame some of the complexity of our
machine learning system.

2.2 Akka, a reactive toolkit
The next tool I’m going to introduce is Akka. It’s an important tool to understand
because it gives you reusable components to construct elastic and resilient systems. As
you saw in chapter 1, it can be easy to build a machine learning system that doesn’t
hold up to the real-world challenges of scale and failure. Akka and the ideas behind it
provide solutions to some of those problems.

 But first, I’ll spend some time familiarizing you with the basics of Akka usage. Com-
pared to the Akka material later in the book, this section is introductory and mostly
intended to give you some context and understanding of how Akka does what it does.
Once you’re comfortable with how systems built on Akka achieve their guarantees,
then we can move on to using Akka primarily as a dependent library that powers
higher-level abstractions. Don’t worry if some of Akka remains a mystery to you. We’ll
only be using Akka for some parts of this book. It’s a powerful and complex toolkit;
this section only scratches the surface of what it can do. The main goal here is to
develop a mental model of how an Akka system honors its guarantees. But before you
can understand how Akka works, you need to understand how actors work.

2.2.1 The actor model

The actor model is a way of thinking of the world that identifies each thing as an actor.
What’s an actor? An actor is a pretty simple thing. In response to a message it receives,
it can only do three things:

 Send messages
 Create new actors
 Decide how to behave when it receives its next message

That may sound limiting, but it’s quite useful.
 First, let’s consider communicating via sending messages. You saw this communica-

tion style in action in the Sniffable example from chapter 1. I proposed that the
model service would have been better able to contain its failure had it communicated
with the main app via message passing, illustrated in figure 2.4.

30 CHAPTER 2 Using reactive tools

 Message passing in itself gives a system
some of the benefits of a full actor system.
That’s because message passing is an
effective approach to implementing con-
tainment.

 By implementing strong boundaries
that can only be crossed via messages,
actors (or services that behave like actors)
can’t contaminate other components of
the system when they fail. In a large system refactoring, often a good place to start is
by separating out components so they only communicate via message passing. That
would have been a good next step for the developers of the Pooch Predictor system
from chapter 1. Well-contained components of a machine learning system are easier
to operate and improve on the journey to reactivity.

 Next, actors may also have the power to create new actors. That’s important for
things like creating a supervisory hierarchy. You’ll see several examples of supervisory
hierarchies in this book, with Akka actors and other related concepts.

 You also saw this on a larger scale in the Sniffable example from chapter 1. In that
section, I proposed that the system as a whole would benefit from a supervisory hierar-
chy, shown again in figure 2.5.

 In this architecture, the supervisor has the complete power of life and death over
supervised services. That’s exactly how things work in the actor model. The benefits of
supervision are similar to the benefits of containment in this context. By building the
concept of failure into the architecture, you now how have system-level solutions for
inevitable failures.

 Lastly, actors can do something you haven’t seen before: they can change their
behavior. After receiving a given message, an actor will decide to do something differ-
ent the next time it receives a message. This means that actors are stateful, a bit like
objects in imperative object-oriented programming (as in Java, Python, and so on).
Most of the code you’ve seen thus far has hewed to a functional programming style
that tries to avoid explicit state manipulation. But components of the system like
remote services have a current state, and you’ll find the actor model a useful
approach to reasoning about that state. The actor model has a coherent concept of

Figure 2.5 A supervisory architecture

Figure 2.4 A contained model-serving
architecture

31Akka, a reactive toolkit

how to encapsulate that state while providing a method of interacting with the outside
world. That doesn’t mean you’ll throw out all the advantages of immutable facts and
pure functions. Only code that needs to deal with state will be stateful. But a fully reac-
tive machine learning system has many components with many different needs.
Thankfully, Scala is a robust and pragmatic language that privileges the benefits of
immutability and purity but allows you to handle state when necessary.

2.2.2 Ensuring resilience with Akka

That’s enough theory; let’s put the actor model to work
with a real problem: ensuring reliable records of votes on
Howlywood Star. You’re still within the same overall Howly-
wood Star voting system originally shown in figure 2.1. But
now you’re concerned specifically with writing received
votes from the API servers in the remote vote database.
This is obviously a pretty common software development
scenario, so I’m going to complicate it slightly. In this sce-
nario, a Chihuahua was put in charge of maintaining the
database, and it did a really bad job. Sometimes the data-
base will record the vote, and other times the database
will just poop itself by throwing an exception. This funda-
mental unreliability means you’ll need to implement the
actor hierarchy shown in figure 2.6.

 All remote resources like databases have a certain
level of unreliability, but this one is worse than most. The
database fails to record a write every other time a vote is
sent across.

class DatabaseConnection(url: String) {
var votes = new mutable.HashMap[String, Any]()

def insert(updateMap: Map[String, Any]) = {
if (Random.nextBoolean()) throw new Exception

updateMap.foreach {
case (key, value) => votes.update(key, value)

}
}

}

If I’ve said it once, I’ve said it a hundred times: you just can’t trust purse dogs with cru-
cial systems administration tasks—they don’t have the focus. Database administration
is clearly a job for a Mastiff.

Listing 2.7 An unreliable database

A simple
object used

to represent
a database

A hash map to
hold the votes

This will throw
an exception

half the time.

A pattern-matching expression is used to
destructure the map entry into a key and a value.

Figure 2.6 Vote-writing actor
hierarchy

32 CHAPTER 2 Using reactive tools

This situation is a mess. You want to record instances of votes in this database.

case class Vote(timestamp: Long, voterId: Long, howler: String)

But that Chihuahua has made all this much harder. Some of the votes will get lost by
the database. Worse, if you don’t protect your vote-writing code, it will fail on the first
exception it receives.

 I do have some good news, though. Voting on Howlywood Star is a large-scale data-
processing application. Any individual vote isn’t that important. You’ve been told by
management that losing some of these votes is totally acceptable and even expected.
What’s crucial is that the voting application remain responsive in the face of underly-
ing failures.

 When you move on to building large-scale machine learning systems, you’ll see
similar situations. The value of any one feature or instance won’t be that great,
because you’ll be processing large aggregates to learn models and make predictions.
Sometimes data can be discarded. Remember, you assume that data is effectively
infinite in a reactive machine learning system.

 In fact, this technique of judicious prioritization and sacrificing data will come
together into an incredibly useful reactive programming technique called the circuit
breaker pattern, which I discuss later in the book.

 Let’s see how you can fulfill the limited scope of your mission even with your unre-
liable vote database. Using Akka, create a vote writer as an actor.

class VoteWriter(connection: DatabaseConnection) extends Actor {
def receive = {

case Vote(timestamp, voterId, howler) =>
connection.insert(Map("timestamp" -> timestamp,

"voterId" -> voterId,
"howler" -> howler))

}
}

Listing 2.8 A vote case class

Listing 2.9 A vote-writing actor

Mutable objects
Listing 2.7 uses a var, a mutable object. Mutable objects are used very infrequently
in idiomatic Scala code. In this example, the use of mutability is just to simplify this
example. It’s not necessary to use mutability here, and we’ll generally avoid the use
of var in this book in favor of immutable objects. But Scala gives us the choice
between using mutable and immutable data, which can be helpful for exploring the
trade-offs of the relevant design choices.

A simple actor that receives votes
and writes them to the database

The method that will
receive messages to
the actor

33Akka, a reactive toolkit

Now create another actor to supervise this actor, as shown in the following listing. It
will be responsible for handling failures by the VoteWriter due to the unreliable data-
base. This supervisory actor should merely recover from errors and not worry about
any data that might have been lost.

class WriterSupervisor(writerProps: Props) extends Actor {
override def supervisorStrategy = OneForOneStrategy() {

case exception: Exception => Restart
}

val writer = context.actorOf(writerProps)

def receive = {
case message => writer forward message

}
}

Note that you use Restart, which is an Akka Directive, a convenient building block
provided by the Akka toolkit. Listing 2.11 shows how all these can be brought
together. First, you create a new actor system for the application. Next you connect to
your database. Then, you construct your actor hierarchy of a VoteWriter supervised
by a WriterSupervisor. With all these elements in place, you can now send votes to
the database using your actor system. This app ends with printing the number of votes
that the database has.

object Voting extends App {
val system = ActorSystem("voting")

val connection = new DatabaseConnection("http://remotedatabase")
val writerProps = Props(new VoteWriter(connection))
val writerSuperProps = Props(new WriterSupervisor(writerProps))

val votingSystem = system.actorOf(writerSuperProps)

votingSystem ! Vote(1, 5, "nom nom")
votingSystem ! Vote(2, 7, "Mikey")
votingSystem ! Vote(3, 9, "nom nom")

println(connection.votes)
}

Listing 2.10 A supervisory actor

Listing 2.11 Full voting app

A supervisory actor instantiated with a
Props, a configuration object for an actorSupervision

strategy the
supervisory

actor will
use for the
VoteWriter The strategy is to restart

in the event of failure; this
will clear any internal
state in the actor.Creates the

writer actor
in the given

context
Passes all messages
through to the supervised
VoteWriter actor

Instantiates a
new actor system

Connects to
the databaseCreates a Props

configuration
object for the

VoteWriter

Creates
 a Props for the

WriterSupervisor
Creates

actors from
the Props

objects Sending messages in
Akka is done using
the ! method.

34 CHAPTER 2 Using reactive tools

This approach definitely achieves some resilience in the face of failure. Moreover, it
shows how you can build the possibility of failure into the application structure from
the most trivial of beginnings. But you’re probably not satisfied with this solution:

 The database uses mutability.
 The app can and does lose data.
 Explicitly building this actor hierarchy required you to think a lot about exactly

how the underlying database might fail.
 Recording data in a database sounds like a common problem that someone else

has probably already solved.

If you see these issues as deficiencies in this design, you’re 100% right. This simple
example isn’t the ideal way to record your data in a database. All of chapter 3 is
dedicated to a better approach to collecting and persisting data. There, I’ll build on
the approach you’ve seen in this chapter as a guide for how we want to interact with
databases. We’ll still use Akka actors, but we’ll get to zoom up to a higher level of
abstraction that keeps the focus on our application logic and not on low-level failure-
handling concerns. The Akka toolkit is extremely powerful, and many libraries and
frameworks make excellent use of it to build reactivity into applications. The next
section introduces one of the best of those frameworks: Spark.

2.3 Spark, a reactive big data framework
Spark is the last tool we’ll consider in this chapter. It’s a framework for large-scale data
processing, written in Scala. There are lots of reasons to use Spark to process large
amounts of data:

 It’s an incredibly fast data-processing engine.
 It can handle enormous amounts of data when used on a cluster.
 It’s easy to use, thanks to an elegant, functional API.
 It has libraries that support common use cases like data analysis, graph analyt-

ics, and machine learning.

We’ll use Spark in chapters 4 and 5 to build out one of the core components of a
machine learning system: the feature-generation and model-learning pipeline. Spark
is the textbook example of a reactive system, and later chapters explain much of the
how and why of Spark’s reactivity. But before we get into that deeper exploration of
Spark, I want to get you started with a simple example problem: predicting the future.

 The Spark framework is one of several high-level tools that we’ll use in this book to
build reactive machine learning systems. In this example, we’ll tackle the problem of
predicting the number of votes that the Howlywood Star systems will receive in the
hours leading up to the close of voting. Historically, the last few hours of voting in a
week are the most intense in terms of load, so the Howlywood Star engineering team
wants to plan for the upcoming season’s traffic spikes. You have at your disposal some
historical files that describe basic data about the voting activity over time, and with

35Spark, a reactive big data framework

that and Spark you can build a model to predict the number of votes that will be cast
over time.

 First, you’ll need to do some basic setup to begin building a Spark app. Specifically,
you’ll create a configuration object to hold all your settings, and a context object that
defines a specific execution context from those settings.

val session = SparkSession.builder.appName("Simple ModelExample")

➥ .getOrCreate()
import session.implicits._

The SparkSession object you create here is used as your connection between regular
Scala code and objects managed by Spark, potentially on a cluster. The next listings
show how a SparkSession can be used to deal with things like I/O operations.

 These setup steps give you a lot of options that are particularly relevant when
you’re scaling up to massive clusters. But for the moment, most of those capabilities
are irrelevant, so we’ll ignore them. In chapter 4 and beyond, we’ll dig deeper into
taking advantage of the rich possibilities Spark offers. For the moment, we’ll take
advantage of the simplicity of the API to get started with a minimum of boilerplate.

 Load the data for the two datasets that you’ll use to build the model.

val inputBasePath = "example_data"
val outputBasePath = "."
val trainingDataPath = inputBasePath + "/training.txt"
val testingDataPath = inputBasePath + "/testing.txt"
val currentOutputPath = outputBasePath + System.currentTimeMillis()

In a model-learning pipeline, the data used to learn the model is called the training
set. The data used to evaluate the learned model is called the test set.

 One important detail to note about these datasets is that the training data comes
from older shows than the testing data. In dealing with time series data like this, it’s
always important to cleanly separate the in-sample data used for training from the out-
of-sample data used for testing. If you fail to do that, then your testing data no longer
represents an expectation of the model’s behavior when released on truly new data. In
this case, I’ve prepared the data for you, so there’s no danger of you committing this
data-handling error, unless you mix up the training and testing sets.

Listing 2.12 Basic Spark setup

Listing 2.13 Handling the data path

A session for your app
Imports serializers for primitive
datatypes in your session

The path to where you put the
example files from the repo Where you want to write

the modeling outputs of
this pipeline

Creates a unique path per execution
to make rerunning simpler

36 CHAPTER 2 Using reactive tools

 Next, you need to load these files into Spark’s in-memory representation of data-
sets, called resilient distributed datasets (RDDs). RDDs are Spark’s core abstraction. They
provide enormous amounts of data in memory, spread across a cluster without you
having to explicitly implement that distribution. In fact, RDDs can even handle what
happens when some data disappears due to cluster nodes failing, again without you
having to concern yourself with handling this failure.

 First, you’ll load the data using a Spark utility for loading data. Then, you’ll pass a
function as an argument to the data.

val trainingData = session.read.textFile(trainingDataPath)
val trainingParsed = trainingData.map { line =>

val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ')

➥ .map(_.toDouble)))
}.cache()

val testingData = session.read.textFile(testingDataPath)

val testingParsed = testingData.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ')

➥ .map(_.toDouble)))
}.cache()

There are a few things worth calling out in this small code listing. First, it uses a
higher-order pure function.

NOTE Functions that can be passed as arguments to other functions are
known as higher-order functions. Using them is a pervasive technique in Scala
programming and Spark applications.

This is the standard pattern you’ll use to interact with Spark RDDs. Spark uses this
functional programming model whereby you pass functions to the data as a way of dis-
tributing data-processing workloads across a cluster. This isn’t merely a syntax; Spark
will literally serialize this function and send it to all the nodes storing the data in the
RDD. Shifting from sending data to functions to sending functions to data is one of the
changes you make when using big data stacks like Hadoop and Spark.

 Also, although it may not be clear, all the preceding Spark code is lazy. No data is
read at the time that these commands are issued. Recapping from chapter 1, laziness
is the intentional delay of execution. Ensuring the best possible performance in exe-
cuting your data-processing task is a key part of Spark’s strategy. By waiting until the

Listing 2.14 Loading training and testing data

Loads the data from a file. Common data formats are
supported, including machine learning–specific ones.The map

function
applies a

higher-order
function to

the RDD.

A LabeledPoint is a machine learning–
specific type designed to encode an instance
consisting of a feature vector and a concept.

The cache
method tells

Spark you
intend to

reuse this
data, so keep
it in memory

if possible.

Same code as the training set, repeated
for the testing set, shown for clarity

37Spark, a reactive big data framework

last moment to evaluate, Spark can make informed choices about what data to process
and where to send it.

 Having loaded the data, you can now learn a linear model for the data using one of
MLlib’s learning algorithms. The following listing uses linear regression to derive that
linear model.

val numIterations = 100
val model = LinearRegressionWithSGD.train(trainingParsed.rdd,

➥ numIterations)

At this point, you’ve merely learned a model—you have no idea whether that model is
good enough for the critical problem of predicting future canine singing sensations.
You can’t use it to make predictions within the live system.

To understand how useful this model is, you should now evaluate it on data that it
hasn’t seen—the testing set.

val predictionsAndLabels = testingParsed.map {

➥ case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)

}

Listing 2.15 Training a model

Listing 2.16 Testing a model

Max number
of iterations
the algorithm
should run forThe model learned

on the training set

Linear regression
For those unfamiliar with linear models, they’re simply a statistical technique for find-
ing the line that most closely tracks all the data points. We won’t get into the details
of different model-learning algorithms until chapter 5. If you’re interested in linear
regression specifically, Wikipedia has a good introduction: https://en.wikipedia.org/
wiki/Linear_regression.

Another higher-order function,
this uses pattern matching to
destructure the LabeledPoints
in the testing set.

Destructuring
Destructuring is a common technique in Scala and other functional programming lan-
guages. It’s the inverse operation of instantiating a data structure. When used with
pattern matching, it provides a convenient syntax for giving names to the pieces of a
data structure.

38 CHAPTER 2 Using reactive tools

Now that you’ve applied this model to new data, you can use more utilities from MLlib
to report on the performance of the model.

val metrics = new MulticlassMetrics(predictionsAndLabels.rdd)
val precision = metrics.precision
val recall = metrics.recall
println(s"Precision: $precision Recall: $recall")

Finally, you can save this model to disk.

model.save(session.SparkContext, currentOutputPath)

How to save learned models is a tricky topic once you get into it. I discuss it more in
chapters 6 and 7. For the moment, having a saved version of the model on disk will be
sufficient. It would be useful if you wanted to use this model on other data in the
future.

 The model could now be used to predict future vote counts. Given a feature vector,
the model could be used to predict the expected number of votes. The Howlywood Star
engineering team could plan around the possibility of peak load getting as high as the
predicted value from the model.

 That prediction may or may not be correct, but it’s still useful for planning purposes.
The metrics reported, the precision and the recall, give you some view into how much
you can trust the predictions of the model. Later in the book, I discuss more-
sophisticated approaches to modeling, and these approaches require you to reason
more about the performance of learned models. But those approaches build on the
process you’ve seen here: training a model and then evaluating it on a test set to see how
it will perform. You’ll even see how you can combine model metrics like these with
reactive techniques to make machine learning systems that do some of this work for you.

 Predicting the future is definitely hard work, but building the pipeline to do it is
quite easy if you use the right tools. With the techniques shown in this chapter, the
Howlywood Star team was able to build out a pretty impressive backend for a canine
reality show. Using Spark, they were able to predict absurdly high levels of viewer
engagement, leading to massive load on the voting system, and plan accordingly. But
they weren’t able to predict the breakout success of Tail-Chaser Swift, the winner of
Season 2. Who could? That season, the audience loved poodles. They got to vote on
every song, dance, and trick that the aspiring Howlywood Stars had to offer, thanks to
a reactive system supporting the apps that they love.

Listing 2.17 Model metrics

Listing 2.18 Saving a model

A metrics object that can calculate
various performance statistics

The precision of
the model on

the testing set

The recall of
the model on

the testing set
Prints
performance
statistics to
the console

39Summary

Summary
 Scala gives you constructs to help you reason about uncertainty:

– Options abstract over the uncertainty of something being present or not.
– Futures abstract over the uncertainty of actions, which take time.
– Futures give you the ability to implement timeouts, which help ensure

responsiveness through bounding response times.
 With Akka, you can build protections against failure into the structure of your

application using the power of the actor model:
– Communication via message passing helps you keep system components

contained.
– Supervisory hierarchies can help ensure resilience of components.
– One of the best ways to use the power of the actor model is in libraries that

use it behind the scenes, instead of doing much of the definition of the actor
system directly in your code.

 Spark gives you reasonable components to build data-processing pipelines:

– Spark pipelines are constructed using pure functions and immutable trans-
formations.

– Spark uses laziness to ensure efficient, reliable execution.
– MLlib provides useful tools for building and evaluating models with a mini-

mum of code.
In the next chapter, we’ll begin building out a real, large-scale machine learning sys-
tem. I’ll show you how to address the intrinsic uncertainty of real-world data in your
data model. Also, I’ll show how to use an immutable database of facts to achieve hori-
zontal scalability. As part of that, I’ll introduce a distributed database called Couch-
base. Finally, I’ll show how you can use reactive programming idioms to handle the
uncertainties of processing time and failure.

Resources
This chapter has been a quick, shallow introduction to some incredibly complicated
and powerful technologies. If you want to learn more about any of these three tech-
nologies, Manning has several relevant books for you:

 Scala—Functional Programming in Scala: www.manning.com/books/functional-
programming-in-scala; Scala in Action: www.manning.com/books/scala-in-action;
Scala in Depth: www.manning.com/books/scala-in-depth

 Akka—Akka in Action: www.manning.com/books/akka-in-action
 Spark—Spark in Action: www.manning.com/books/spark-in-action

Part 2

Building a reactive
 machine learning system

This is the heart of the book. This part will build up your knowledge of the
components of a machine learning system, starting from raw data in the wild
and looping all the way back around to acting on the real world.

 Chapter 3 is about collecting data. It’s not a normal chapter for a machine
learning book: instead of hand-waving away where data comes from, we’ll take a
serious look at a range of data issues, concentrating on when that data is big,
fast, and hairy.

 Chapter 4 explores deriving useful representations of data, called features.
This is one of the most important skills a machine learning systems developer
can have and is often the largest part of the work.

 Once you get to chapter 5, you should be ready to do what everyone focuses
on in machine learning: learn some models. There are entire books about learn-
ing models, but this chapter represents a unique view and will give you an under-
standing of how this step connects to what came before and what comes after. I’ll
introduce you to some useful techniques to employ when the pieces of your sys-
tem aren’t as easy to join up as you’d like.

 Chapter 6 covers the rich topic of how to make decisions about machine
learning models that you’ve produced. Not all models are created equal. There’s
a range of common errors that you can make in learning about models, so I’ll
attempt to arm you with tools you can use to figure out the differences between
a good model and a bad one.

 Chapter 7 discusses taking the models you’ve produced and getting them some-
where they can be useful. Models sitting on your laptop probably aren’t much use to
anyone; they have to be available to be used by your customers, colleagues, and so on.
This chapter shows you how to build services that can put your models to use.

 Finally, in chapter 8, you get to use your models to affect the real world. This is
where the rubber hits the road: you’ve closed the loop in fulfilling your user’s request
with a response. Reactive systems design is all about how you meet your users’ expecta-
tions. So, in chapter 8, we turn our perspective solidly to the user of your machine
learning system and see how you can realize those expectations.

43

Collecting data

This chapter begins our journey through the components, or phases, of a machine
learning system (figure 3.1). Until there’s data in your machine learning system,
you can’t do anything, so we’ll begin with collecting data. As you saw in chapter 1,
the naive approach for getting data into a machine learning system can lead to all
sorts of problems. This chapter will show you a much better way to collect data, one
based on recording immutable facts. The approach in this chapter also assumes
that the data being collected is intrinsically uncertain and effectively infinite.

 Many people don’t even mention data collection when they discuss building
machine learning systems. At first glance, it doesn’t seem as exciting as learning
models or making predictions. But collecting data is crucial and a lot harder than it
looks. There are no easy shortcuts to building production-grade apps that can col-
lect vast amounts of highly variable data in an environment of change. We need to

This chapter covers
 Collecting inherently uncertain data

 Handling data collection at scale

 Querying aggregates of uncertain data

 Avoiding updating data after it’s been written to a
database

44 CHAPTER 3 Collecting data

bring the full power of reactive machine learning to bear on this problem to ensure
that we have good, usable data that can be consumed by other components of our
machine learning systems.

 To go deeper into the world of reactive machine learning systems, we’re going to
have to go beyond the problems of mere house pets. We’ll have to venture as far as the
wilds of Africa. The challenge you’ll take on is recording the movements of animals
during the largest terrestrial mammal migration on the planet. The Serengeti’s Great
Migration is full of data that’s big, fast, and hairy. Let’s see how that can data be collected.

3.1 Sensing uncertain data
In this chapter, you’ll play the role of a noble lion
queen. As matriarch of your pride, you take your job
very seriously.

 You have an age-old problem, though: your food
doesn’t stay still. Every spring, the wildebeests and
zebras that you feed on have the annoying habit of
leaving the southern grassland plains to migrate north.
Then, every fall, these herbivores just turn around and
head back south for the rainy season.

 As a responsible queen and mother, you must track
the movements of this mass migration of your prey. If you didn’t, your pride would
have nothing to eat. But the data-management problems of this job are severe, as
shown in figure 3.2.

 To get any sort of handle on this big, fast, and hairy data, you’re going to need to
deploy some advanced technology. You have a long-term vision that you’ll one day be
able to use this data to build a large-scale machine learning system that will predict
where the prey will be next, so that your lionesses can be there waiting for them. But
before you can even consider building systems on top of this data, you need to collect
it and persist it somehow.

Figure 3.1 Phases of machine learning

45Sensing uncertain data

Thanks to a recently signed contract with technology consultants Vulture Corp., you now
have access to some sensor data about the movement of land-bound animals (figure 3.3).

The Vulture Corp. Eyes in the Skies system is based on an aerially deployed, distributed
network of sensors. These sensors use a combination of body-heat detection and move-
ment patterns to report back the number and kinds of different animals at any given loca-
tion. Here’s an example of the sort of raw animal-sensor data that this system provides:

Figure 3.2 Great Migration data

Figure 3.3 Vulture Corp.

123456 37 83 1442074486 17 3

reading_id: Unique identifier for
the reading

sensor_id: Unique identifier for
the sensor

zebras: Number of zebras
detected

location_id: Unique identifier
for the location at which the
reading was taken

timestamp: Time at which the
reading was taken

wildebeests: Number of
wildebeests detected

46 CHAPTER 3 Collecting data

But this raw schema isn’t really what the Eyes in the Skies system understands about
the animals below. The sensors only provide an approximate view of what’s going on
using body heat and movement. There will always be some uncertainty in that process.

 After some further negotiation with (intimidation of) your technology consultants,
you get access to a richer data feed. That data feed, shown here, is more explicit about
the difficulty of being precise in raw sensor data like this:

This data model has far more statistical richness. It expresses that there may have
been far fewer or far more than 20 animals at that location. A consultation of the Eyes
in the Skies API documentation reveals that these are the upper and lower bounds of
the probability distribution of the sensed data, at a 95% confidence level.

The difference between 16 and 24 prey animals might not sound big, and in some
contexts it might not be. Some readings have lower bounds that are zero and upper
bounds that are nonzero. For those locations, you could send lionesses to them
expecting to find one or two wildebeests and find none at all when they arrive. Thanks
to this explicitly uncertain data model, you as the lion queen can now make more-
informed decisions about where to allocate your scarce hunting resources.

 The difference between these two data models is an example of a data transforma-
tion. In a data-processing system, as in a machine learning system, many of the opera-
tions of the system are effectively data transformations. Transforming data is such a

reading_id

sensor_id

123456 37 83 1442074486 16 24 0.15

location_id

timestamp

animals_lower_bound: The lower
bound of animals detected

animals_upper_bound: The upper
bound of animals detected

percent_zebras: The percentage of
animals detected that are zebras

Confidence intervals
The uncertain data model shown in the diagram uses a confidence interval. This is a
measure of the amount of uncertainty around the sensor reading. The confidence
level refers to the percentage of all possible readings that would be expected to
include the true count of animals. Right now, you don’t need to be concerned with
how these values are calculated—we won’t spend much time on basic statistical
techniques like confidence intervals in this book. Instead, we’ll focus on how to build
systems that are aware of the need to express and respond to uncertainty. For a more
in-depth introduction to statistics, many books and courses are available. Think Like
a Data Scientist by Brian Godsey (Manning, 2017) is a good book for building a
deeper understanding of statistics, in the context of doing data-science work.

47Sensing uncertain data

common task that I’ll spend all of chapter 4 discussing how to do it in a reactive
machine learning system. The original sensor data feed from the Eyes in the Skies sys-
tem was a transformation of a more raw form of the data that was originally kept inter-
nal to Vulture Corp. As you saw, transforming this raw data caused you to lose
information about the intrinsic uncertainty in the sensor readings. This is a common
mistake that people make when implementing data-processing systems: people
destroy valuable data by only persisting some derived version of the raw data.

 Consider the following proposal from a young lioness working on the transformed
sensor data from the Eyes in the Skies system:

In this heavily transformed version of the data, the young lioness developer has
decided to simplify things down to just a Boolean value representing whether there
are more than 10 wildebeests in a given location. That’s the cutoff value that you’ve
been using lately to decide whether a location should be hunted. Her thinking is that
this is all you really need to know to make a decision anyway.

 But you’re an experienced lion queen. In a bad year, you might go out to stalk a
single zebra foal. The circle of life is always turning, and you can’t always know what
the future will bring. You may need all the richness of the data model in the previous
diagram to make the hard decisions when the time comes.

 This is an illustration of a fundamental strategy in data collection. You should
always collect data as immutable facts.

 A fact is merely a true record about something that happened. In the example of
the Eyes in the Skies system, the thing that happened was that an aerial sensor sensed
some animals. To know when that fact occurred, you should record the time when it
occurred, although there are some interesting choices about how that time can be
expressed. The example so far has used a simple timestamp to say when a sensor read-
ing was recorded.

 Similarly, it’s often a good idea to record the entity or entities that the fact relates
to. In the animal-sensor data, you recorded both the entity from which the fact origi-
nated—the sensor—and the entity being described in the fact: the location. Even
though there was some uncertainty around the sensor data collected, the facts will
never need to be changed. They will always be a fact about the system’s view of the
world at that point in time.

reading_id

123456 37 83 1442074486 TRUE

sensor_id

location_id

timestamp

enough_prey: Whether there is
enough prey to bother hunting in
this location

48 CHAPTER 3 Collecting data

 Immutable facts are an important part of building a reactive machine learning sys-
tem. Not only do they help you build a system that can manage uncertainty, they also
form the foundation for strategies that deal with data-collection problems that only
emerge once your system gets to a certain scale.

3.2 Collecting data at scale
The amazing thing about the Great Migration is its scale. Millions of animals are all on
the move at once. The wildebeests are the most numerous of these animals, but there
are also hundreds of thousands of gazelles and zebras. Beyond these top three meals
on hooves, there’s a long tail of lesser animals to consider. From high up on your
headquarters on Lion Rock, you can only see so much. The Eyes in the Skies system
has given you a starting point for understanding the state of the savannah, but it’s just
a starting point. It’s clear that you need to begin processing this data into more useful
representations if you want to be able to take action on any of it.

 You’ll start with exploring how to build data aggregations, derived data produced
from multiple data points. The next section shows an initial approach toward building
a data-aggregation system that won’t be the final strategy you’ll use. The techniques
used will all work at a certain level of scale but then run into problems as scale
increases. These ways of building a distributed data-processing system are the begin-
nings of a solution to problems of scale, and you’ll build on this section to handle
even greater scale in section 3.3.

3.2.1 Maintaining state in a distributed system

As a first project, you’ve decided to try to track the density of prey in each region. A
region is a geographically contiguous set of locations, each with its own sensor feed.
The density statistic that you’d like maintained could be simply expressed as in the fol-
lowing listing.

case class LocationReading(animals: Integer, size: Double)
val reading1 = LocationReading(13, 42.0)
val reading2 = LocationReading(7, 30.5)
val readings = Set(reading1, reading2)
val totalAnimals = readings.foldLeft(0)(_ + _.animals)
val totalSize = readings.foldLeft(0.0)(_ + _.size)
val density = totalAnimals/totalSize

This sort of approach is reasonable in some ways. The code in listing 3.1 uses only
immutable data structures, so all values used in calculations can be thought of as facts.

Listing 3.1 Calculating location densities

Case class representing a reading of number of
animals at a particular location and size of location

Example
instance of

a reading

Collection of readings
Sum of all
animals in

a region

Density in terms of
animals/square mile
—27.6 in this caseSum of square miles of all

locations in a region

49Collecting data at scale

Summing is done using a pure, higher-order function, +, so there’s no chance of a
side effect in the summing function causing unforeseen problems. But it’s not yet
time for the lions to sleep tonight. Things are going
to quickly get trickier.

 For you to know which regions have the most
density of prey without going out to where the sen-
sor readings are being reported, you’ll need to
aggregate all those readings in a single location—
your headquarters at Lion Rock. To that end, you’ve
signed a contract with the Cheetah Post message-
delivery company (figure 3.4).

 They’ll go out to each of the data-collection sta-
tions and get the latest reading. Then they’ll rush
the message about that information back to Lion
Rock. That latest sensor reading will then be added
to the aggregate view of all the locations.

 Anticipating problems with a bunch of cheetahs running back and forth, you
decide to do what any seasoned leader would do: you put a pangolin in charge. In
exchange for you agreeing not to eat him, the pangolin has agreed to maintain the
current state of the density data as part of the system shown in figure 3.5.

Folding
The summing operations in listing 3.1 are implemented using a fold. Folding is a com-
mon functional programming technique. The foldLeft operator used begins with an
initial sum of zero. The second argument is the higher-order function to be applied to
each item in the set of readings. In a sum, this higher-order function is the addition
of the running sum with the next item. But folding is a powerful technique that can
be used for more than just summing. You’ll see it again, particularly in later chapters
that use Spark. If you want to dive deep into why folding is such a powerful technique,
check out the paper “A Tutorial on the Universality and Expressiveness of Fold” by
Graham Hutton: www.cs.nott.ac.uk/~pszgmh/fold.pdf.

Figure 3.5 Simple density-data system architecture

Figure 3.4 Cheetah Post

50 CHAPTER 3 Collecting data

The pangolin implements the state management process in listing 3.2, which shows an
example of how this aggregate view of the savannah can be maintained. The example
update scenario is the receipt of a message about there being a high density of ani-
mals in Region 4.

case class Region(id: Int)

import collection.mutable.HashMap
var densities = new HashMap[Region, Double]()

densities.put(Region(4), 52.4)

By putting a single pangolin in charge of this process, you’ve ensured that the chee-
tahs will never contend to make updates. Moreover, by making all the cheetahs line up
to talk to the pangolin, you’ve ensured that all updates are processed in the order of
their arrival.

 But the number of animals constantly on the move leads to there being more chee-
tahs with more updates than you originally planned for. The process of recording
these updates quickly becomes too much for one pangolin to handle.

 You decide to hire another pangolin. Now there are two pangolins and two queues
that cheetahs can line up in to get their updates applied, as shown in figure 3.6.

 At first this seems like a good solution. After all, you can keep hiring more pango-
lins as your scale of data collection goes up. That gives you some ability to continue
applying your updates in the same amount of time despite increasing load.

Listing 3.2 Aggregating regional densities

Case class representing a region

Mutable hash map storing the latest
density values recorded by region

This update will overwrite the previous
value for Region 4 with a new value.

Figure 3.6 Adding a queue

51Collecting data at scale

But that initial elasticity quickly fades. Part of the reason is that while one pangolin is
making an update to the system, the other pangolin can only wait. Although pango-
lins do spend some time walking back and forth from queues of cheetahs to the
update computer, they soon spend most of their time waiting for access to the single
computer. This means updates about one region block updates about another region.

 You decide to try adding more pangolins with more computers and implement the
system shown in figure 3.7.

To enable multiple pangolins to make updates concurrently, you decide to change the
data structure used to store the densities data.

import collection.mutable._

var synchronizedDensities = new LinkedHashMap[Region, Double]()

➥ with SynchronizedMap[Region, Double]

This implementation now allows for concurrent access to make updates to densities
data using a system of locks that ensures that each thread of execution has the latest
view of the data. Different pangolins can be at different computers making different
updates, but each pangolin holds a lock for the time it takes to make their update. At
first, this looks like an improvement, but the performance eventually is much like the
old system. The synchronization process and its locking mechanism turn out to be

Listing 3.3 Concurrently accessible densities

Figure 3.7 Concurrent access to a shared mutable state

52 CHAPTER 3 Collecting data

quite similar to the old single-computer bottleneck. You’ve merely narrowed the
scope of what the scarce resource is down to a lock on the mutable data structure.
With this bottleneck, you can no longer add more pangolins to get more throughput;
they would just contend for locks on the densities hash map.

 There’s another unfortunate outcome of this new system. Cheetahs can get in any
queue they want. Some pangolins work faster than other pangolins. This system now
allows some updates to be processed out of order.

 For example, Region 6 of the savannah had a high density of animals this morning
before all the zebras moved on. If the updates about these sensor readings are applied
in order, you’ll have an accurate view of this region, as shown in the following listing.

densities.put(Region(6), 73.6)
densities.put(Region(6), 0.5)
densities.get(Region(6)).get

But now it’s also possible for updates to be applied out of order. A sequence of out-of-
order updates gives you a very different view of the situation.

densities.put(Region(6), 0.5)
densities.put(Region(6), 73.6)
densities.get(Region(6)).get

In this second scenario, you’re sending out your valuable lionesses to go hunt in an
area where you should already know that all the animals have moved on.

 If you look back at the first sequence of updates, it also has deficiencies. In the
afternoon, you have an accurate view of the lack of prey in Region 6 if the updates are
applied as in listing 3.4. But what happened in the morning? There should have been
lionesses out there in such a prey-rich region, but they were just lounging around. By
the time the afternoon rolled around, all you knew was that there was no more prey in
Region 6. You had no idea that a few lazy lionesses missed the day’s best opportunity
to hunt. There has to be a better way of organizing a hunt.

3.2.2 Understanding data collection

Where did things go wrong with the prey-density project? This system was supposed to
answer basic questions about where animals were located on the savannah. Sure, the
vulture consultants had proposed a follow-on project where this prey data would be
used to create machine learning models of future prey locations. But you can’t even
begin to consider future projects without figuring out what’s wrong with the current
system and fixing it.

Listing 3.4 In-order updates

Listing 3.5 Out-of-order updates

Morning update

Afternoon update

Returns 0.5

Afternoon update

Morning update

Returns 73.6

53Persisting data

 You gather your team to dissect the prey-density system and figure out what you’ve
learned about collecting data. You reach the following conclusions:

 Data models that simplify real uncertainty throw away valuable data.
 A single data-collection processor can’t be scaled out to handle your real workload.
 Distributing your workload doesn’t scale much better if you use shared mutable

state and locks.
 Using mutation to update data destroys historical knowledge and can even

cause you to overwrite new data with older data.

The team had all worked so hard to get this prey-data-collection system online, and yet
it had some very real shortcomings. Are they going to be up for the challenges of fixing
this system and taking it to the next level? They don’t call a group of lions a pride for noth-
ing! Of course they can build on what they’ve learned. They’ve learned a lot about how
to collect data. They’re ready for the next phase of building out a data-collection app:
storing this data.

3.3 Persisting data
To build the rest of your data-management systems, you’ll need a database. As you’ll
see in the next chapter, machine learning pipelines usually start with some database of
raw data. Although it may seem obvious, let’s try to understand what you need out of a
database. You may already know some of this material, but bear with me while I
explain databases from the perspective of reactive systems.

 Often people will discuss databases in terms of the operations that they support, so
first and foremost, a database should allow you to store your data. In database termi-
nology, this is usually called the create operation. For a database to store your data, that
data must ultimately be persisted—it should still exist in the database after your pro-
gram shuts down. Persistence also means that your data should survive things like a
database server restart.

 The other thing a database needs to do for you is return your data when you ask
for it. This is referred to as the read operation. In reactive terms, this is just responsive-
ness again.

 No other property of a database would matter if it didn’t consistently return timely
responses to your queries. People have different ideas about how data can and should
be read from a database, and we’ll consider those options later in this chapter.

 There are some other things that databases can do that you won’t need to do.
Some databases support the update operation, which changes data. As you’ve seen,
mutating data can lead to all sorts of problems, so you’re going to avoid the update
operation. Instead of changing data that has already been persisted, you’ll rely on
writing new immutable facts.

 Similarly, some databases support an operation called delete. I know! That’s just
horrifying. In the reactive machine=learning paradigm, we assume that our data is
effectively infinite.

54 CHAPTER 3 Collecting data

 You won’t need that misguided delete operation, because you’ll build your system
to handle unbounded amounts of data from the very beginning. Now let us never
speak of deleting again.

3.3.1 Elastic and resilient databases

Now that you understand some basics of how you’re going to use a database, let’s get
more specific about what will make a database work well in a reactive data-processing
system. After all, you have a grand vision that you’ll eventually be able to use this prey
data to build a large-scale machine learning system that will predict future prey move-
ments. With all this big, fast, hairy data, you need to consider the reactive principles in
your technology selection choices if you ever want to get that far.

 As you saw in the initial attempt to collect the prey data, achieving elasticity is hard.
You can’t just add more data-processing units, but that idea is on the right track.

 You’ll need a distributed database, one with multiple servers working in concert to
function as a single database. Rather than a bunch of cheetahs contending to write to
the same pangolin-controlled computer, you’ll ideally use a database where multiple
servers can write as well as read, something like figure 3.8. True distribution of both
create and read operations is the only way a database can scale.

Figure 3.8 A distributed database

55Persisting data

The other reactive principle to consider is resilience. In the Serengeti, you know that
resources can disappear. Some days the rivers will flood and water will be abundant.
Other times, the ground will be scorched by the blazing African sun, and you’ll need
to walk for days to find water.

 Unfortunately, this is exactly how things work for distributed databases. With many
servers responsible for storing and retrieving your data, it’s inevitable that one of
them will fail. Maybe it will just fall asleep for a while like a lazy lioness neglecting her
hunting duties for a midday nap. Or maybe it will be worse, and that server will be like
Patrick Pangolin, who was last seen in the mouth of a hungry cheetah. That’s the cir-
cle of life.

 You wind up in the same place that you were in your quest for elasticity: you need a
distributed database, where your data is stored redundantly on multiple servers.
Replication is a consistently relevant strategy when building reactive machine learning
systems.

 Thankfully, there are all sorts of databases that have many of the properties I just
described. The one that we’ll use in this book is called Couchbase. It’s a distributed
database that can both handle the scale of the Great Migration and deal with the inev-
itable failure of servers along the way. Couchbase has a wealth of capabilities, far beyond
your minimum requirement to create and read large numbers of records. In fact, many
other databases would work for the example in this chapter. The techniques of reactive
machine learning are not tied to any specific technology. But Couchbase will make it
easy for you to get started building your database of facts and could easily support any
future projects like a prey-movement prediction system. As an additional benefit,
Couchbase itself is a very reactive system, implemented using several reactive strategies.
Later in this chapter, we’ll take a quick look at how Couchbase, as a highly reactive data-
base, can support building reactive data-processing systems.

3.3.2 Fact databases

One of the tools you’ll use to scale the prey-movement system is a fact-based data model.
Earlier in this chapter, I talked about facts as a useful technique for raw-data capture.
You can express the enriched data model you saw earlier in the form of a standard
case class.

case class PreyReading(sensorId: Int,
locationId: Int,
timestamp: Long,
animalsLowerBound: Double,
animalsUpperBound: Double,
percentZebras: Double)

This case class represents an individual sensor reading.

Listing 3.6 Sensor-readings case class

56 CHAPTER 3 Collecting data

 You’ll store your data in the form of JSON documents. Databases that support this
style of data model are sometimes called document stores. Couchbase uses a document
data model where the documents are stored inside buckets. Buckets serve a similar pur-
pose as tables do in traditional relational databases, but they don’t require the defini-
tion of the structure of those documents to be defined in the database itself. They’ll
accept any documents that you choose to write. You don’t need to do anything to the
database before it can accept documents of your readings for persistence. Not having
to plan all aspects of your data model in advance can make it easier to deal with evolu-
tion in your data model, such as when you added richer information about sensor
uncertainty. Chapter 11 discusses more about handling the evolution of a reactive
machine learning system.

 To persist instances of the sensor-reading case class, you have to define a formatter
that can convert those instances into an equivalent JSON representation that can be
stored in the database.

import play.api.libs.json._
import scala.concurrent.ExecutionContext
import org.reactivecouchbase.ReactiveCouchbaseDriver

val driver = ReactiveCouchbaseDriver()
val bucket = driver.bucket("default")
implicit val ec = ExecutionContext.Implicits.global

implicit val preyReadingFormatter = Json.format[PreyReading]

def readingId(preyReading: PreyReading) = {
List(preyReading.sensorId,

preyReading.locationId,
preyReading.timestamp).mkString("-")

}

val reading = PreyReading(36, 12, System.currentTimeMillis(), 12.0, 18.0, 0.60)

val setDoc = bucket.set[PreyReading](readingId(reading), reading)

setDoc.onComplete {
case Success(status) => println(s"Operation status: ${status.getMessage}")
case _ => throw new Exception("Something went wrong")

}

Listing 3.7 Creating sensor-reading documents

Creates a database connection
to the default bucket

Execution context to
use with futures

Formatter to use
to convert the case
class into JSON

Helper function to create a
composite primary key for
PreyReading documentsExample

sensor
reading

Operation to insert reading as a
document that returns a FuturePrints the result of the

insertion operation for
illustrative purposes

57Persisting data

Separating the definition of an action from the execution of that action is often a help-
ful idiom. In this case, it helps you encode that the insertion both is going to take time
and could possibly fail. For example, you could replace the failure case in the pattern
match with retry logic or some meaningful notification. Recognizing and encoding the
possibility of failure is a key step toward building resilience into a system.

 This style of database interaction relies on futures, a technique you saw in chap-
ter 2. One of the main benefits of this programming style comes out of operations
like the database insertion being non-blocking. The call to bucket.set returns
immediately. Because insertions into a remote database take time, the driver doesn’t
tie up the main thread of execution of your program waiting on the data to travel to
the remote database and a successful insertion message to come back. This future-
based, non-blocking programming style works well with the goal of consistent opera-
tion under varying load.

 There’s more in this approach to data collection that supports elasticity. Many dif-
ferent data-collection program instances can be writing to many different database
nodes at the same time without any need to lock individual items and coordinate
access. This is similar to the final architecture of multiple cheetahs talking to multiple
pangolins that you saw in the previous section, but it’s even better. Thanks to the
power of a non-blocking driver, it’s almost like the cheetahs can just drop off their
messages and run away. They don’t need to wait for the slow pangolin to actually make
the update. The cheetahs certainly don’t need to wait for the pangolins to coordinate
access to the shared mutable state object among themselves, because there’s no
shared mutable state. But how do you figure out the current state of the savannah
from a database full of raw facts?

3.3.3 Querying persisted facts

The easiest way to see data in your database is to define some structure on top of the
data you’ve inserted. Being able to define this structure after you’ve inserted the data
is one of the unique features of modern, flexible databases, in contrast to the more

Implicits
You may have noticed that listing 3.7 uses implicits. The implicit formatter you cre-
ated defines a way of converting the PreyReading case class into JSON. Had you not
created this formatter, the library you use to interact with the database wouldn’t know
how to perform this conversion and wouldn’t be able to save instances of sensor
readings to the database. The implicit keyword makes that conversion available
for use without requiring you to explicitly perform the conversion yourself. The com-
piler will infer that the formatter should be used to perform this conversion during the
compilation of your program and insert the conversion code. Implicits are a unique
and powerful feature of Scala. You’ll come across them all the time in idiomatically
written Scala code. For a more thorough introduction to implicits and their use, check
out Scala in Depth by Joshua D. Suereth (Manning Publications, 2012).

58 CHAPTER 3 Collecting data

rigid relational databases you may be familiar with. You’ve been recording your data as
JSON documents, and now you need to express some information about the structure
of your documents using JavaScript. Don’t worry if you’re not familiar with JavaScript.
You’ll only be writing simple JavaScript to define the structure of views on top of raw
data. Listing 3.8 defines a view on top of the data you’ve written to your database
instance that allows you to retrieve documents by sensor ID. That view will be defined
in terms of a design document, which is another way of saying stored query.

import scala.concurrent.Await
import scala.concurrent.duration.Duration
import java.util.concurrent.TimeUnit

val timeout = Duration(10, TimeUnit.SECONDS)

Await.result(
bucket.createDesignDoc("prey",

"""
| {
| "views":{
| "by_sensor_id": {
| "map": "function (doc, meta) { emit(doc.sensorId, doc); }
| }
| }
| }

""".stripMargin), timeout)

By defining this view, you’ve created indexes on documents by their sensor IDs. This
will make it simple and fast to look up documents by sensor ID.

 In a fully populated database backing a real application, this view creation could
take a meaningful amount of time to create the necessary data structures to return the
data expressed in the view. In Couchbase, this issue is managed by separating a
development view, what you’ve just created, from a production view. Different
distributed databases choose to implement views differently or not at all, so it’s worth
understanding the specifics of the database that you’re using when implementing a

Listing 3.8 Creating a sensor ID view

Blocks to wait for the future to
complete, for illustrative purposes

Creates a design doc (in
JavaScript) called prey

Defines views in
this design doc

Creates a
view by

sensor ID Creates a function to emit all
documents with a sensor ID

Blocking
I’ve been calling out the benefits of non-blocking, futures-based interactions, so it
may seem strange to be blocking to see these benefits. The reason you may want to
use blocking in a small, exploratory context like this is that it allows you to see the
results of the small piece of code you’re working on by forcing the future to complete.
In a fully implemented and properly composed system, you wouldn’t want to rely on
calls to Await.result. You’d want to use this technique primarily in an exploratory
or debugging context.

59Persisting data

real system. But this query-centric workflow is common to a wide range of distributed
non-relational databases.

 Note that Couchbase views are defined in terms of higher-order functions using a
map-reduce syntax, with both the map and reduce phases being expressed as higher-
order functions. Defining views in terms of map-reduce operations may feel strange to
you if you have experience with views in relational databases. Modern distributed non-
relational databases often blur the lines between the data processing done by the
application and the data processing done by the database. Certainly, you could imple-
ment this exact same view in your application code in Scala, but that would require
you to effectively process the entire contents of the database for any given query.
When your use of a distributed database reduces to a brute-force full-table scan for a
query, usually there’s something wrong at the design level in your application (or the
database!). It’s better to have the database take on this work itself, if for no other rea-
son than that the view-maintenance work will be done only once per view rather than
once per query.

 Once you have this view, you can retrieve that last reading that you recorded in list-
ing 3.7. To do so, you can just find the reading with the matching sensor ID, using the
code in the following listing.

val retrievedReading = Await.result(
bucket.searchValues[PreyReading]

("prey", "by_sensor_id")
(new Query().setIncludeDocs(true)

.setKey("36"))
.toList,

timeout)
.head

println(retrievedReading)

If you only wrote the sensor reading from listing 3.7, then this query will just operate
over that one document. But very similar querying syntax will return all the readings
that have ever been recorded for that sensor.

 To see how operations on a large sequence of facts work, the next listing creates
some synthetic data to play with.

import _root_.scala.util.Random
import play.api.libs.iteratee.Enumerator

val manyReadings = (1 to 100) map { index =>
val reading = PreyReading(

36,
12,

Listing 3.9 All records for a sensor

Listing 3.10 Inserting many random records

Searches for
PreyReading values

Design
document

 and view to use

Creates a new query
Defines the key

of the document
queried to be
for sensor 36

Forces the result to a list

Takes the first element

Prints the retrieved reading

Produces 100 random
sensor readings

60 CHAPTER 3 Collecting data

System.currentTimeMillis(),
Random.nextInt(100).toDouble,
Random.nextInt(100).toDouble,
Random.nextFloat())

(readingId(reading),
reading)

}

val setManyReadings = bucket.setStream(Enumerator.enumerate(manyReadings))

setManyReadings.map { results =>
results.foreach(result => {

if (result.isSuccess)

➥ println(s"Persisted: ${Json.prettyPrint(result.document.get)}")
else println(s"Can't persist: $result")

}
)

}

Now you should have a lot more facts in your database to work with.

You can use this database of facts to answer questions about the current state of the
savannah. For example, you can define a time-based view of readings from sensor 36
using the view in the following listing.

Await.result(
bucket.createDesignDoc("prey_36",

"""
|{
| "views":
| {
| "by_timestamp":
| {
| "map":
| "function (doc, meta) { if (doc.sensorId == 36)

➥ { emit(doc.timestamp, doc); } }"

Listing 3.11 A time-based view of sensor readings

Inserts all the random
readings as a stream

Maps over each result
and prints the result

Enumerators
Listing 3.10 uses Enumerator from the Play web framework. An enumerator is a
source of data that pushes input into some recipient. Enumeration is simply operat-
ing over each item in the collection one by one. When complete, a Play Enumerator
will return the final state of the recipient, using a futures-based programming tech-
nique called a Promise (discussed later in this book). In this case, you’re using enu-
merators as way of sending a stream of values to the database for persistence. In a
real system, the data being enumerated would come from multiple sensors sending
back sensor-reading data.

Defines
this view

for sensor
36 only

61Persisting data

| }
| }
|}

""".stripMargin), timeout)

Because you haven’t thrown away any data through mutating some state, it’s easy to
get a picture of the recent readings and the way things have been trending.

val lastTen = Await.result(
bucket.searchValues[PreyReading]

("prey_36", "by_timestamp")
(new Query().setIncludeDocs(true)

.setDescending(true)

.setLimit(10))
.toList,

timeout)

Or you can jump back to a specific point in time.

val tenth = Await.result(
bucket.searchValues[PreyReading]

("prey_36", "by_timestamp")
(new Query().setIncludeDocs(true)

.setDescending(true)

.setSkip(9)

.setLimit(1))
.toList,

timeout)

It’s important to note that this design gets around the problems shown with out-of-
order updates you encountered in listing 3.5. In the previous system, because you had
scaled the data-collection system out to have multiple cheetahs bringing updates to
multiple pangolins, an old update could get applied over a newer one and destroy any
record of that fact. In the revised system, that’s not possible because you store all sen-
sor readings without ever throwing any away. The code in the following listing shows
how to intentionally insert the records out of order.

val startOfDay = System.currentTimeMillis()
val firstReading = PreyReading(36, 12, startOfDay, 86.0, 97.0, 0.90)
val fourHoursLater = startOfDay + 4 * 60 * 60 * 1000
val secondReading = PreyReading(36, 12, fourHoursLater, 0.0, 2.0, 1.00)

val outOfOrderReadings = List(
(readingId(secondReading), secondReading),

Listing 3.12 The 10 most recent sensor readings

Listing 3.13 An individual old sensor reading

Listing 3.14 Inserting out-of-order readings

Orders by the most
recent readings

Takes only the 10 most
recent readings

Skips the nine most
recent readings

Only returns the tenth
most recent reading

First reading collected

Second reading collected

62 CHAPTER 3 Collecting data

(readingId(firstReading), firstReading))

val setOutOfOrder = bucket.setStream(Enumerator.enumerate(outOfOrderReadings))

setOutOfOrder.map { results =>
results.foreach(result => {

if (result.isSuccess)

➥ println(s"Persisted: ${Json.prettyPrint(result.document.get)}")
else println(s"Can't persist: $result")

}
)

}

Insertion order doesn’t matter now, so all the queries shown here work exactly the
same whether the records are inserted in order or out of order. You can see this by
retrieving the last two sensor readings.

val lastTwo = Await.result(
bucket.searchValues[PreyReading]

("prey_36", "by_timestamp")
(new Query().setIncludeDocs(true)

.setDescending(true)

.setLimit(2))
.toList,

timeout)

This query returns the same result regardless of whether the records were inserted in
order or out of order, because no data is lost and the sortation is determined by the
query. You no longer have to risk an out-of-order update corrupting your view of the
savannah by writing over old data with new. You’re free to scale out your data-collection
operation to arbitrary scale without concern for insertion order of updates.

3.3.4 Understanding distributed-fact databases

Now that you’ve gotten your prey-data collection under control, it might help to zoom
out and understand why this alternative approach works so much better. First, you’ve
kept all the richness of your knowledge of the source data. Sensor readings are uncer-
tain, and that uncertainty is persisted in your database.

 By not transforming your raw data before persisting it, you maintain a true record
of the data the sensors collected. This history of facts is much richer and more useful
than a single mutated value. An immutable-fact database can tell you anything you’ll
ever want to know about the state of the savannah.

 Next, you achieved true horizontal scalability thanks to the combination of a good
data architecture and a very elastic database. You can continue to add data-collection
applications, and your data model and your database will now support arbitrary
increases in scale. In this respect, Couchbase gives you even stronger guarantees than

Listing 3.15 Retrieving the last two readings

Defines a list of readings in the wrong order

Inserts readings out of order

63Persisting data

many databases. Each node in your database cluster has the same responsibilities and
capabilities, so the architecture of the final system is very close to the ideal shown in
the original distributed-database diagram, shown in figure 3.9.

 There’s no single throughput bottleneck for reads or writes. The fact-based data
model ensures that multiple operations aren’t contending over a shared mutable
value, so your ability to scale out is limited only by your infrastructure budget.

 This architecture also has important fault-tolerance capabilities. Should the net-
work partition your nodes in some way, your database will remain usable.

 Tolerance to network partitions is a difficult property for a database design to sup-
port. Strategies for greater partition tolerance have been some of the most important
innovations in database development. Moreover, your data model works in tandem with
the capabilities provided by the database infrastructure. In the event of a network par-
tition, the fact data that the database returns will be an accurate, if possibly incomplete,
view of the data collected. The potential for an incomplete view of the data is unavoid-
able in a distributed database with partition tolerance. When the network prevents
communication across the cluster, some portion of your data is unavailable; no data-
base can change that. Instead of degrading responsiveness, databases like Couchbase

Figure 3.9 A distributed database

64 CHAPTER 3 Collecting data

choose to return the data that is available.
That’s not a problem for your application.
Consider the sequence of sensor readings
about the count of zebras believed to be at
Location 55, shown in figure 3.10.

 This series of readings relies on the
data stored in all the nodes of the database
cluster. Due to the uncertainties of the net-
work, you could lose access to some of the
nodes in your cluster (figure 3.11).

The database client library used in the update-processor program instances will route
to the still reachable nodes. But because your data is distributed throughout the clus-
ter, it’s possible that you might only have access to some of the data temporarily. For
example, you may only have the readings shown in figure 3.12.

 For many applications, this partial view of the database would be entirely usable.
After all, the facts recorded don’t reflect a current certainty that a definite number of
zebras are present at Location 55. You could even use a linear model to interpolate

Figure 3.11 A network partition

Figure 3.10 Complete zebra-sensor readings

65Persisting data

the missing value if you wanted to. The
trend is the same, and the overall picture
provided by a query over readings would
present a similar view. The actions you
would choose to take upon seeing this
incomplete data are likely the same that
you would take upon seeing the full data-
set: you would send out some lionesses to
go get you some lunch with stripes on it.
By using a fact-based data model with explicit uncertainty, you’ve already built the
ability to handle incomplete views of data into your usage of the database.

 There are even more properties of this system that are worth highlighting. A data-
base’s internal concurrency models are its plan for how to coordinate multiple users.
Couchbase uses a concurrency model called multiversion concurrency control (MVCC).
Systems that use MVCC don’t internally lock records for mutation but instead repli-
cate data.

 As you’ve seen, locking gets in the way of scaling out write operations. A Couch-
base cluster doesn’t have the problems of trying to hold locks across nodes, because
within the cluster, actions are coordinated via message passing.

 This message passing occurs within an actor system using a supervisory hierarchy.
As you’ve seen before and we’ll discuss more in future chapters, using supervisory
hierarchies is an excellent strategy for ensuring resilience in the face of failure.

All these characteristics of the database’s capabilities align with your larger goals in
building a reactive machine learning system. This alignment of vision has a real
impact on the performance you can expect from the database and the guarantees it
provides. Because your data model no longer relies on shared mutable state that must
be maintained with locks, you can take advantage of the extreme scalability capabili-
ties of a database oriented around massive concurrency.

 Finally, the main reason why this data architecture works so well is that it’s based
on ideas that work well in reality, not just in software:

Erlang and OTP
The actor model implementation in Couchbase isn’t Akka. Rather, it’s built in a lan-
guage called Erlang using the OTP libraries. Erlang and OTP (the Open Telecom Plat-
form) were originally built for telecommunications applications. More recently, Erlang
and OTP have become popular within the implementation of distributed databases
like Couchbase and Riak. But the actor-model implementations in both systems are
closely related (for example, frequent use of pattern matching). In fact, Jonas Bonér
created Akka based on his experiences with Erlang and OTP.

Figure 3.12 Incomplete zebra sensor readings

66 CHAPTER 3 Collecting data

 Facts are always true . Future facts don’t erase old facts. If there were gazelles
down by the river this morning, that then that statement is always true, even
after the gazelles have moved on. You don’t need to forget the gazelles from the
morning just because you no longer go down there and eat them.

 Central control leads to contention . Even though you’re the Lion Queen, you can’t
make the impossible possible. A pangolin can only move so fast, and cheetahs
don’t have the patience for data entry. They can’t all coordinate through a sin-
gle point of control and still be all over the savannah at the same time. It’s the
same reason you don’t have all your lionesses come back to you to ask if they
should take down a slow-moving wildebeest. If everything had to go through a
single point of control, whether that point of control is you or any other lion,
nothing would ever get done.

 You can’t know anything for certain . The savannah is a sprawling, chaotic, distrib-
uted system, and the view from Lion Rock only stretches so far. Maybe the chee-
tahs didn’t really eat Patrick Pangolin. Who’s to say? All you or any other lion
can do is record all the uncertain facts that come your way and do your best
with the knowledge that you have. Being a responsible queen means acknowl-
edging the limits of what you know, because the real world of Africa is uncer-
tain. Acknowledging that you’re not omniscient is part of making good
decisions on behalf of the pride.

The principled but pragmatic approach you’ve taken to building out your data-
collection capabilities has since paid off. You’ve been able to feed your pride more
consistently and use your time more effectively. Predators across Africa are envious
of your all-encompassing view of the savannah. The approaches you’ve used in this
chapter have also put you in an excellent position to build new capabilities in the
future. Next up, you’re considering building a feature-extraction system to power
machine learning predictions. The work of a Lion Queen is never done, but you’ve
done well for your pride. You should be proud.

3.4 Applications
You may not live in the Serengeti. You may not operate a distributed sensor network.
You may not even be a lion. Can you still apply the techniques used in this chapter? Of
course you can.

 All sorts of systems produce massive amounts of data that must be collected to be
put to use. Cell phones are full of various sensors, many of which send data back to
remote servers. For example, location data is collected by phones and used to guide
location-specific recommendations. Even without the use of sensor hardware, most
mobile apps send all sorts of data back to remote servers about interactions with the
app: swipes, notification dismissals, and so on. This data can be used to determine
things like application usage patterns and relate groups of users (for example, sub-
way commuters).

67Reactivities

 And it’s not just phones and wildlife. A huge range of traditional products now
produce data that can be collected and used in machine learning systems. We live in a
world where robot vacuums and electric cars are real and even common. The amount
of data we’re producing as a species has exploded over the past decades. As you’ve
seen in this chapter, working with data at scale is different. The techniques demon-
strated in this chapter offer real solutions to the problems of working with data at
scale. If you’re working on an existing system that uses a different approach to han-
dling data, it may not be clear that all the techniques used in this chapter are neces-
sary. You may be working with data that isn’t as big, fast, or hairy as the data from a
sensor network tracking the Great Migration. In that case, you may not need to use all
the techniques shown in this chapter.

 But even something as innocuous as a watch can now produce an effectively
infinite amount of data of arbitrary complexity. Once you start looking for applica-
tions to apply these techniques, it’s not hard to find them. Any system with a concept
of a user, such as an e-commerce site, could use a fact-based data model to record
what users do. Even a modest-velocity business application recording customer trans-
actions could potentially benefit from removing contention over locked data items.
The tools in this chapter work incredibly well at scale, but they don’t require your appli-
cation to be at scale. Now that you understand the reactive approach to data collec-
tion, I expect that you’ll find lots of places to put it to use.

3.5 Reactivities
It’s time to go off on your own and explore the world of reactive data collection. This
section’s “reactivities” are intended to point you in the direction of venturing even fur-
ther beyond the plains of the Serengeti. There are no right answers for these ques-
tions; there are merely engaging problems that you can explore even more than I’ve
had the room to discuss in the space of a book:

 Implement your own reactive data-collection system. Really. Start with the basics of
recording facts. You can use any database you want. Pick whatever database
you’re most familiar with. Then think about the consequences of that choice:
– What properties of the database will support making your system more

responsive, resilient, elastic, and message-driven? In particular, think
through how the database is going to handle massive increases in load.

– What’s going to slow down and why?
– Think through the data model you’ve used for your facts—does it include

uncertainty?
– If it didn’t before, how hard would it be to add an explicitly uncertain data

model?
– What sort of queries can you write against your database?
– If you deleted a bunch of records, how would the results of those queries

change?

68 CHAPTER 3 Collecting data

 Explore other open source data-collection systems. They don’t have to be explicitly
reactive. If you want to focus on the design pattern shown in this chapter, it
often goes by the name of event sourcing. There are even databases specifically
built around supporting event sourcing. This idea of collecting lots of fact data
is commonly used in monitoring applications. Can you find any monitoring
applications that persist all the events in the systems being monitored as data-
bases of immutable facts? Try answering some of the same questions about
these other implementations of data-collection systems that you asked of your
own implementation:

– How reactive is this system?
– If something failed, what would happen?
– If the system were overwhelmed with traffic, would I still be able to query

data?
– Would I ever want or need to rewrite a “fact” after it was written?
– What would happen if I kept pushing data into this system forever?

NOTE You got familiar with Couchbase in this chapter as a way of learning
about databases in general. You won’t need more specific knowledge of this
database for the rest of the book, but if you’re interested in the technology,
there are several books on it.

Summary
 Facts are immutable records of something that happened and the time that it

happened:
– Transforming facts during data collection results in information loss and

should never be done.
– Facts should encode any uncertainty about that information.

 Data collection can’t work at scale with shared mutable state and locks.
 Fact databases solve the problems of collecting data at scale:

– Facts can always be written without blocking or using locks.
– Facts can be written in any order.

 Futures-based programming handles the possibility that operations can take
time and even fail.

In the next chapter, we’ll put all this raw fact data to use by deriving semantically
meaningful features from it. These features will be the first step in our process of
extracting insight from data. We’ll be using Spark again to show how to build feature-
extraction pipelines that are both elegant and massively scalable.

69

Generating features

This chapter is the next step on our journey through the components, or phases, of
a machine learning system, shown in figure 4.1. The chapter focuses on turning
raw data into useful representations called features. The process of building systems
that can generate features from
data, sometimes called feature engi-
neering, can be deceptively com-
plex. Often, people begin with an
intuitive understanding of what
they want the features used in a sys-
tem to be, with few plans for how
those features will be produced.
Without a solid plan, the process of
feature engineering can easily get
off track, as you saw in the Sniffable
example from chapter 1.

This chapter covers
 Extracting features from raw data

 Transforming features to make them more useful

 Selecting among the features you’ve created

 How to organize feature-generation code

Figure 4.1 Phases of machine learning

70 CHAPTER 4 Generating features

 In this chapter, I’ll guide you through the three main types of operations in a fea-
ture pipeline: extraction, transformation, and selection. Not all systems do all the
types of operations shown in this chapter, but all feature engineering techniques can
be thought of as falling into one of these three buckets. I’ll use type signatures to
assign techniques to groups and give our exploration some structure, as shown in
table 4.1.

Real-world feature pipelines can have very complex structures. You’ll use these
groupings to help you understand how you can build a feature-generation pipeline in
the best way possible. As we explore these three types of feature-processing operations,
I’ll introduce common techniques and design patterns that will keep your machine
learning system from becoming a tangled, unmaintainable mess. Finally, we’ll consider
some general properties of data pipelines when discussing the next component of
machine learning systems discussed in chapter 5, the model-learning pipeline.

To cover this enormous scope of functionality, we need to rise above it all to gain
some perspective on what features are all about. To that end, we’ll join the team of
Pidg’n, a microblogging social network for tree-dwelling animals, not too different
from Twitter.

 We’ll look at how we can take the chaos of a short-form, text-based social network
and build meaningful representations of that activity. Much like the forest itself, the
world of features is diverse and rich, full of hidden complexity. We can, however,
begin to peer through the leaves and capture insights about the lives of tree-dwelling
animals using the power of reactive machine learning.

Table 4.1 Phases of feature generation

Phase Input Output

Extract RawData Feature

Transform Feature Feature

Select Set[Feature] Set[Feature]

Type signatures
You may not be familiar with the use of types to guide how you think about and imple-
ment programs. This technique is common in statically typed languages like Scala and
Java. In Scala, functions are defined in terms of the inputs they take, the outputs they
return, and the types of both. This is called a type signature. In this book, I mostly use
a fairly simple form of signature notation that looks like this: Grass => Milk. You can
read this as, “A function from an input of type Grass to an output of type Milk.” This
would be the type signature of some function that behaves much like a cow.

71Extracting features

4.1 Spark ML
Before we get started building features, I want to introduce you to more Spark func-
tionality. The spark.ml package, sometimes called Spark ML, defines some high-level
APIs that can be used to create machine learning pipelines. This functionality can
reduce the amount of machine learning–specific code that you need to implement
yourself, but using it does involve a change in how you structure your data.

 The Spark ML API uses mostly the same nomenclature for feature extraction,
transformation, and selection that I use in this chapter, though there are subtle
differences. If and when you read the Spark ML documentation, you may see something
called a transformation operation, which I call an extraction operation. These are generally
minor, unimportant differences that you can ignore. Different technologies name and
structure this functionality differently, and you’ll see all sorts of different naming
conventions in the machine learning literature. The type signature–based framework
for dividing feature-generation functionality that I use in this chapter is just a tool to
help you implement and organize your code. Once you’ve mastered the feature-
generation concepts in this chapter, you’ll be better equipped to see through
differences in nomenclature to the similarities in functionality.

 Much of the machine learning functionality in Spark is designed to be used with
DataFrames, instead of the RDDs that you’ve seen up until this point. DataFrames are
simply a higher-level API on top of RDDs that give you a richer set of operations. You
can think of DataFrames as something like tables in relational databases. They have
different columns, which you can define and then query. Much of the recent progress
in performance and functionality within Spark has been focused on DataFrames, so to
get access to the full power of things like MLlib’s machine learning capabilities, you’ll
need to use DataFrames for some operations. The good news is that they’re very simi-
lar to the RDDs you’ve been working with and tabular data structures you may have
used in other languages, such as pandas DataFrames in Python or R’s data frames.

4.2 Extracting features
Now that I’ve introduced some of the tools, let’s
begin to solve the problem. We’ll start our
exploration of the feature engineering process
at the very beginning, with raw data. In this
chapter, you’ll take on the role of Lemmy, an
engineer on the Pidg’n data team.

 Your team knows it wants to build all sorts of
predictive models about user activity. You’re just
getting started, though, and all you have are the basics of application data: squawks (text
posts of 140 characters or less), user profiles, and the follower relationships. This is a rich
dataset, for sure, but you’ve never put it to much analytical use. To start with, you’ve
decided to focus on the problem of predicting which new users will become Super
Squawkers, users with more than a million followers.

72 CHAPTER 4 Generating features

 To start this project, you’ll extract some features to use in the rest of your machine
learning system. I define the process of feature extraction as taking in raw data of
some sort and returning a feature. Using Scala type signatures, feature extraction can
be represented like this: RawData => Feature. That type signature can be read as, “A
function that takes raw data and returns a feature.” If you define a function that satis-
fies that type signature, it might look something like the stub in the following listing.

def extract(rawData: RawData): Feature = ???

Put differently, any output produced from raw data is a potential feature, regardless of
whether it ever gets used to learn a model.

 The Pidg’n data team has been collecting data since day one of the app as part of
keeping the network running. You have the complete, unaltered record of all the
actions ever taken by Pidg’n users, much like the data model discussed in chapter 3.
Your team has built a few aggregates of that data for basic analytical purposes. Now
you want to take that system to the next level by generating semantically meaningful
derived representations of that raw data—features. Once you have features of any
kind, you can begin learning models to predict user behavior. In particular, you’re
interested in seeing if you can understand what makes particular squawks and squawk-
ers more popular than others. If a squawker has the potential to become very popular,
you want to provide them with a more streamlined experience, free of advertisements,
to encourage them to squawk more.

 Let’s begin by extracting features from the raw data of the text of squawks. You can
start by defining a simple case class and extracting a single feature for a few squawks.
Listing 4.2 shows how to extract a feature consisting of the words in the text of a given
squawk. This implementation will use Spark’s Tokenizer to break sentences into
words. Tokenization is just one of several common text-processing utilities that come
built into Spark that make writing code like this fast and easy. For advanced use cases,
you may want to use a more sophisticated text-parsing library, but having common
utilities easily available can be very helpful.

case class Squawk(id: Int, text: String)

val squawks = session.createDataFrame(Seq(
Squawk(123, "Clouds sure make it hard to look

➥ on the bright side of things."),
Squawk(124, "Who really cares who gets the worm?

➥ I'm fine with sleeping in."),
Squawk(125, "Why don't french fries grow on trees?")))

➥ .toDF("squawkId", "squawk")

Listing 4.1 Extracting features

Listing 4.2 Extracting word features from squawks

Case class to hold a basic
data model of a squawk

Creates a DataFrame
from a sequenceInstantiates

example
instances of

squawks
Names
columns to
place values in
a DataFrame

73Extracting features

val tokenizer = new Tokenizer().setInputCol("squawk")

➥ .setOutputCol("words")

val tokenized = tokenizer.transform(squawks)

tokenized.select("words", "squawkId").show()

The operations in listing 4.2 give you a DataFrame that contains a column called
words, which has all the words in the text of the squawk. You could call the values in
the words column a feature. These values could be used to learn a model. But let’s
make the semantics of the pipeline clearer using the Scala type system.

 Using the code in listing 4.3, you can define what a feature is and what specific sort
of feature you’ve produced. Then, you can take the words column from that Data-
Frame and use it to instantiate instances of those feature classes. It’s the same words
that the Tokenizer produced for you, but now you have richer representations that
you can use to help build up a feature-generation pipeline.

trait FeatureType {
val name: String
type V

}

trait Feature extends FeatureType {
val value: V

}

case class WordSequenceFeature(name: String, value: Seq[String])

➥ extends Feature {
type V = Seq[String]

}

val wordsFeatures = tokenized.select("words")
.map(row =>
WordSequenceFeature("words",

row.getSeq[String](0)))

wordsFeatures.show()

With this small bit of extra code, you can define your features in a way that’s more
explicit and less tied to the specifics of the raw data in the original DataFrame. The
resulting value is an RDD of WordSequenceFeature. You’ll see later how you can

Listing 4.3 Extracting word features from squawks

Sets up a Tokenizer to
split the text of squawks
into words and put them
in an output column

Executes the
Tokenizer and
populates the
words column

in a DataFrame Prints the results for inspection

Defines a base trait for
all types of features

Requires feature
types to have names

Type
parameter to
hold the type

of values
generated by

feature
Defines a base trait for all
features as an extension
of feature types

Requires that features have values of
the type specified in the feature type

Defines a case
class for features

consisting of
word sequences

Specifies that the type of features being
generated is a sequence of strings (words)

Selects a words column
from the DataFrame

Maps over rows
and applies a

function to each

Creates an instance of
WordSequenceFeature named words

Gets extracted
words out of a

row
Prints features for inspection

74 CHAPTER 4 Generating features

continue to use this Feature trait with specific case classes defining the different types
of features in your pipeline.

 Also note that, when operating over the DataFrame, you can use a pure, anony-
mous, higher-order function to create instances of your features. The concepts of
purity, anonymous functions, and higher-order functions may have sounded quite
abstract when I introduced them in chapter 1. But now that you’ve seen them put to
use in several places, I hope it’s clear that they can be very simple to write. Now that
you’ve gotten some Scala and Spark programming under your belt, I hope you’re
finding it straightforward to think of data transformations like feature extraction in
terms of pure functions with no side effects.

 You and the rest of the Pidg’n data team could now use these features in the next
phase of the machine learning pipeline—model learning—but they probably
wouldn’t be good enough to learn a model of Super Squawkers. These initial word
features are just the beginning. You can encode far more of your understanding of
what makes a squawker super into the features themselves.

 To be clear, there are sophisticated model-learning algorithms, such as neural net-
works, that require very little feature engineering on the data that they consume. You
could use the values you’ve just produced as features in a model-learning process. But
many machine learning systems will require you to do far more with your features
before using them in model learning if you want acceptable predictive performance.
Different model-learning algorithms have different strengths and weaknesses, as we’ll
explore in chapter 5, but all of them will benefit from having base features trans-
formed in ways that make the process of model learning simpler. We need to move on
to see how to make features out of other features.

4.3 Transforming features
Now that you’ve extracted some basic features, let’s figure out how to make them use-
ful. This process of taking a feature and producing a new feature from it is called fea-
ture transformation. In this section, I’ll introduce you to some common transform
functions and discuss how they can be structured. Then I’ll show you a very important
class of feature transformations: transforming features into concept labels.

 What is feature transformation? In the form of a type signature, feature transfor-
mation can be expressed as Feature => Feature, a function that takes a feature and
returns a feature. A stub implementation of a transformation function (sometimes
called a transform) is shown in the next listing.

def transform(feature: Feature): Feature = ???

In the case of the Pidg’n data team, you’ve decided to build on your previous feature-
engineering work by creating a feature consisting of the frequencies of given words in

Listing 4.4 Transforming features

75Transforming features

a squawk. This quantity is sometimes called a term frequency. Spark has built-in function-
ality that makes calculating this value easy.

val hashingTF = new HashingTF()
.setInputCol("words")
.setOutputCol("termFrequencies")

val tfs = hashingTF.transform(tokenized)

tfs.select("termFrequencies").show()

It’s worth noting that the hashingTF implementation of term frequencies was imple-
mented to consume the DataFrame you previously produced, not the features you
designed later. Spark ML’s concept of a pipeline is focused on connecting operations
on DataFrames, so it can’t consume the features you produced before without more
conversion code.

Let’s take a look at how Spark ML’s DataFrame-focused API is intended to be used in
connecting operations like this. You won’t be able to take full advantage of Spark ML
until chapter 5, where you’ll start learning models, but it’s still useful for feature gen-
eration. Some of the preceding code can be reimplemented using a Pipeline from
Spark ML. That will allow you to set the tokenizer and the term frequency operations
as stages within a pipeline.

Listing 4.5 Transforming words to term frequencies

Instantiates an instance of a class
to calculate term frequencies Defines an input column

to read from when
consuming DataFrames

Defines
 an output

 to put term
frequencies in

Executes the transformationPrints term
frequencies

for inspection

Feature hashing
The use of the term hashing in the Spark library refers to the technique of feature
hashing. Although it’s not always used in feature-generation pipelines, feature hash-
ing can be a critically important technique for building large numbers of features. In
text-based features like term frequencies, there’s no way of knowing a priori what all
the possible features could be. Squawkers can write anything they want in a squawk
on Pidg’n. Even an English-language dictionary wouldn’t contain all the slang terms
squawkers might use. Free-text input means that the universe of possible terms is
effectively infinite.

One solution is to define a hash range of the size of the total number of distinct features
you want to use in your model. Then you can apply a deterministic hashing function
to each input to produce a distinct value within the hash range, giving you a unique
identifier for each feature. For example, suppose hash("trees") returns 65381. That
value will be passed to the model-learning function as the identifier of the feature.
This might not seem much more useful than just using "trees" as the identifier, but
it is. When I discuss prediction services in chapter 7, I’ll talk about why you’ll want
to be able to identify features that the system has possibly never seen before.

76 CHAPTER 4 Generating features

val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF))

val pipelineHashed = pipeline.fit(squawksDF)

println(pipelineHashed.getClass)

This Pipeline doesn’t result in a set of features, or even a DataFrame. Instead, it
returns a PipelineModel, which in this case won’t be able to do anything useful,
because you haven’t learned a model yet. We’ll revisit this code in chapter 5, where we
can go all the way from feature generation through model learning. The main thing
to note about this code at this point is that you can encode a pipeline as a clear
abstraction within your application. A large fraction of machine learning work
involves working with pipeline-like operations. With the Spark ML approach to pipe-
lines, you can be very explicit about how your pipeline is composed by setting the
stages of the pipeline in order.

4.3.1 Common feature transforms

Sometimes you don’t have library implementations of the feature transform that you
need. A given feature transform might have semantics that are specific to your appli-
cation, so you’ll often need to implement feature transforms yourself.

 Consider how you could build a feature to indicate that a given Pidg’n user was a
Super Squawker (user with more than a million followers). The feature-extraction
process will give you the raw data about the number of followers a given squawker has.
If you used the number of followers as a feature, that would be called a numerical fea-
ture. That number would be an accurate snapshot of the data from the follower
graph, but it wouldn’t necessarily be easy for all model-learning algorithms to use.
Because your intention is to express the idea of a Super Squawker, you could use a far
simpler representation: a Boolean value representing whether or not the squawker
has more than a million followers.

 The squirrel, a rather ordinary user, has very few followers. But the sloth is an ter-
rific Super Squawker. To produce meaningful features about the differences between
these two squawkers, you’ll follow the same process of going from raw data, to
numeric features, and then to Boolean features. This series of data transformations is
shown for the two users in figure 4.2.

Listing 4.6 Using Spark ML pipelines

Instantiates a new pipeline
Sets the two stages
of this pipeline

Executes the pipeline

Prints the type of the result of
the pipeline, a PipelineModel

77Transforming features

The following listing shows how to implement this approach to binarization to pro-
duce a Super Squawker feature.

case class IntFeature(name: String, value: Int) extends Feature {
type V = Int

}

case class BooleanFeature(name: String, value: Boolean) extends Feature {
type V = Boolean

}

def binarize(feature: IntFeature, threshold: Double): BooleanFeature = {
BooleanFeature("binarized-" + feature.name, feature.value > threshold)

}

val SUPER_THRESHOLD = 1000000

val squirrelFollowers = 12
val slothFollowers = 23584166

val squirrelFollowersFeature = IntFeature("followers", squirrelFollowers)
val slothFollowersFeature = IntFeature("followers", slothFollowers)

val squirrelIsSuper = binarize(squirrelFollowers, SUPER_THRESHOLD)
val slothIsSuper = binarize(slothFollowers, SUPER_THRESHOLD)

Listing 4.7 Binarizing a numerical feature

Figure 4.2 Feature transformations

Case class representing a numerical
feature where the value is an integer

Specifies that these
are integer features

Case class representing a Boolean feature

Specifies
that

these are
Boolean
features

Function that takes a numeric integer feature
and threshold and returns a Boolean feature

Adds the name of the
transform function to the

resulting feature name

Constant
defining the
cutoff for a
squawker to
be super

Raw
numbers

of
followers

for the
squirrel
and the

sloth

Numeric integer feature
 representing the number of followers

Boolean feature indicating the
squirrel is not a Super Squawker

Boolean feature indicating
the sloth is a Super Squawker

78 CHAPTER 4 Generating features

The binarize function is a good example of a reusable transform function. It also
ensures the resulting feature is somewhat self-describing by appending the name of
the transform function to the resulting feature. Ensuring that we can identify the
operations that were applied to produce a feature is an idea we’ll revisit in later chap-
ters. Finally, note that the transformation function binarize is a pure function.

 Using only pure functions in feature transforms is an important part of establish-
ing a coherent structure for feature-generation code. Separating feature extraction
and feature transformation within a code base can be difficult, and the boundaries
between the two can be hard to draw. Ideally, any I/O or side-effecting operations
should be contained in the feature-extraction phase of the pipeline, with all transfor-
mations’ functionality being implemented as pure functions. As you’ll see later, pure
transforms are simple to scale and easy to reuse across features and feature-extraction
contexts (model learning and predicting).

 There’s a huge range of commonly used transformation functions. Similar to bina-
rization, some approaches reduce continuous values to discrete labels. For example, a
feature designed to express the time of day when a squawk was posted might not use
the full timestamp. Instead, a more useful representation could be to transform all
times into a limited set of labels, as shown in table 4.2.

The implementation of a transform to do this is trivial and is naturally a pure
function.

 There’s another variation on reducing continuous data to labels, called binning, in
which the source feature is reduced to some arbitrary label defined by the range of
values that it falls into. For example, you could take the number of squawks a given
user has made and reduce it to one of three labels indicating how active the squawker
is, as shown in table 4.3.

Table 4.2 Transforming times into time labels

Time Label

7:02 Morning

12:53 Midday

19:12 Night

Table 4.3 Binning

Squawks Label Activity level

7 0_99 Least active squawkers

1,204 1000_99999 Moderately active squawkers

2,344,910 1000000_UP Most active squawkers

79Transforming features

Again, an implementation of such a transform would be trivial and naturally a pure
function. Transforms should be easy to write and should correspond closely to their
formulation in mathematical notation. When it comes to implementing transforms,
you should always abide by the KISS principle: Keep It Simple, Sparrow. Reactive
machine learning systems are hard enough to implement without implementing com-
plicated transforms. Usually, an overly long transform implementation is a smell that
someone has laid a rotten egg. In a few special cases, you may want to implement
something like a transformer with more involved semantics. We’ll consider such cir-
cumstances later in this chapter and later in the book.

4.3.2 Transforming concepts

Before we leave the topic of transformations, we need to consider one very common
and critical class of feature transformations: the ones that produce concepts. As men-
tioned in chapter 1, concepts are the things that a machine learning model is trying to
predict. Although some machine learning algorithms can learn models of continuous
concepts, such as the number of squawks a given user will write over the course of the
next month, many machine learning systems are built to perform classification. In
classification problems, the learning algorithm is trying to learn a discrete number of
class labels, not continuous values. In such systems, the concept has to be produced
from the raw data, during feature extraction, and then reduced to a class label via
transformation. Concept class labels aren’t exactly the same thing as features, but
often the difference is just a matter of how we use the piece of data. Typically, and ide-
ally, the same code that might binarize a feature will also binarize a concept.

 Building on the code in listing 4.7, in the next listing, take the Boolean feature
about Super Squawkers and produce a Boolean concept label that classifies squawkers
into super or not.

trait Label extends Feature

case class BooleanLabel(name: String, value: Boolean) extends Label {
type V = Boolean

}

def toBooleanLabel(feature: BooleanFeature) = {
BooleanLabel(feature.name, feature.value)

}

val squirrelLabel = toBooleanLabel(squirrelIsSuper)
val slothLabel = toBooleanLabel(slothIsSuper)

Seq(squirrelLabel, slothLabel).foreach(println)

Listing 4.8 Creating concept labels from features

Defines labels as
subtypes of features

Creates a case class for
Boolean labels

Defines a simple conversion
function from Boolean features
to Boolean labels

Converts Super
Squawker feature
values into
concept labels

Prints label values
for inspection

80 CHAPTER 4 Generating features

In this code, you’ve defined concept labels as a special subtype of features. That’s not
how features and labels are generally discussed, but it can be a helpful convention for
code reuse in machine learning systems. Whether you intend to do so or not, any
given feature value could be used as a concept label if it represents the concept class
to be learned. The Label trait in listing 4.8 doesn’t change the underlying structure of
the data in a feature, but it does allow you to annotate when you’re using a feature as
a concept label. The rest of the code is quite simple, and you arrive at the same con-
clusion again: people just aren’t that interested in what squirrels have to say.

4.4 Selecting features
Again, you find yourself in the same situation: if you’ve done all the work so far, you
might now be finished. You could use the features you’ve already produced to learn a
model. But sometimes it’s worthwhile to perform additional processing on features
before beginning to learn a model. In the previous two phases of the feature-generation
process, you produced all the features you might want to use to learn a model, some-
times called a feature set. Now that you have that feature set, you could consider throwing
some of those features in the trash.

 The process of choosing from a feature set which features to use is known as feature
selection. In type-signature form, it can be expressed Set[Feature] => Set[Feature], a
function that takes a set of features and returns another set of features. The next listing
shows a stub implementation of a feature selector.

def select(featureSet: Set[Feature]): Set[Feature] = ???

Why would you ever want to discard features? Aren’t they useful and valuable? In the-
ory, a robust machine learning algorithm could take as input feature vectors contain-
ing arbitrary numbers of features and learn a model of the given concept. In reality,
providing a machine learning algorithm with too many features is just going to make
it take longer to learn a model and potentially degrade that model’s performance.
You can find yourself needing to choose among features quite easily. By varying the
parameters used in the transformation process, you could create an infinite number
of features with a very small amount of code.

 Using a modern distributed data-processing framework like Spark makes handling
arbitrarily sized datasets easy. It’s definitely to your benefit to consider a huge range of
features during the feature extraction and transformation phases of your pipeline.
And once you’ve produced all the features in your feature set, you can use some of the
facilities in Spark to cut that feature set down to just those features that your model-
learning algorithm will use to learn the model. There are implementations of feature-
selection functionality in other machine learning libraries; Spark’s MLlib is one of
many options and certainly not the oldest one. For some cases, the feature-selection
functionality provided by MLlib might not be sufficient, but the principles of feature

Listing 4.9 A feature selector

81Selecting features

selection are the same whether you use a library implementation or something more
bespoke. If you end up writing your own version of feature selection, it will still be con-
ceptually similar to MLlib’s implementations.

 Using the Spark functionality will again require you to leave behind your feature-case
classes and the guarantees of static typing to use the machine learning functionality
implemented around the high-level DataFrame API. To begin, you’ll need to construct
a DataFrame of training instances. These instances will consist of three parts: an arbitrary
identifier, a feature vector, and a concept label. The following listing shows how to build
up this collection of instances. Instead of using real features, you’ll use some synthetic
data, which you can imagine being about various properties of Squawkers.

val instances = Seq(
(123, Vectors.dense(0.2, 0.3, 16.2, 1.1), 0.0),
(456, Vectors.dense(0.1, 1.3, 11.3, 1.2), 1.0),
(789, Vectors.dense(1.2, 0.8, 14.5, 0.5), 0.0)

)

val featuresName = "features"
val labelName = "isSuper"

val instancesDF = session.createDataFrame(instances)
.toDF("id", featuresName, labelName)

Once you have a DataFrame of instances, you can take advantage of the feature-selection
functionality built into MLlib. You can apply a chi-squared statistical test to rank the
impact of each feature on the concept label. This is sometimes called feature importance.
After the features are ranked by this criterion, the less impactful features can be dis-
carded prior to model learning. The next listing shows how you can select the two most
important features from your feature vectors.

val selector = new ChiSqSelector()
.setNumTopFeatures(2)
.setFeaturesCol(featuresName)
.setLabelCol(labelName)
.setOutputCol("selectedFeatures")

val selectedFeatures = selector.fit(instancesDF)
.transform(instancesDF)

selectedFeatures.show()

Listing 4.10 A DataFrame of instances

Listing 4.11 Chi-squared-based feature selection

Defines a collection of instances
Hardcodes some
synthetic feature
and concept label
data

Names for
features

and label
columns Creates a DataFrame

from the instances
collectionSets the name of

each column in
the DataFrame

Creates a new feature selector Sets the number
of features to
retain to 2

Sets the
column where

features are

Sets the column where
concept labels areSets the column

to place results,
the selected

features
Fits a chi-squared
model to the data

Selects the most important
features and returns a new
DataFrame

Prints the resulting
DataFrame for inspection

82 CHAPTER 4 Generating features

As you can see, having standard feature-selection functionality available at a library
call makes feature selection pretty convenient. If you had to implement chi-squared-
based feature selection yourself, you’d find that the implementation was a lot longer
than the code you just wrote.

4.5 Structuring feature code
In this chapter, you’ve written example implementations of all the most common
components of a feature-generation pipeline. As you’ve seen, some of these compo-
nents are simple and easy to build, and you could probably see yourself building quite
a few of them without any difficulty. If you’ve Kept It Simple, Sparrow, you shouldn’t
be intimidated by the prospect of producing lots of feature extraction, transforma-
tion, and selection functionality in your system. Or should you?

 Within a machine learning system, feature-generation code can often wind up being
the largest part of the codebase by some measures. A typical Scala implementation
might have a class for each extraction and transformation operation, and that can
quickly become unwieldy as the number of classes grows. To prevent feature-generation
code from becoming a confusing grab bag of various arbitrary operations, you need to
start putting more of your understanding of the semantics of feature generation into the
structure of your implementation of feature-generation functionality. The next section
introduces one such strategy for structuring your feature-generation code.

4.5.1 Feature generators

At the most basic level, you need to define an implementation of what is a unit of
feature-generation functionality. Let’s call this a feature generator. A feature generator
can encompass either extraction or both extraction and transformation operations.
The implementation of the extraction and transformation operations may not be very
different from what you’ve seen before, but these operations will all be encapsulated
in an independently executable unit of code that produces a feature. Your feature
generators will be things that can take raw data and produce features that you want to
use to learn a model.

 Let’s implement your feature generators using a trait. In Scala, traits are used to
define behaviors in the form of a type. A typical trait will include the signatures and
possibly implementations of methods that define the common behavior to the trait.
Scala traits are very similar to interfaces in Java, C++, and C# but are much easier and
more flexible to use than interfaces in any of those languages.

 For the purpose of this section, let’s say that your raw data, from the perspective of
your feature-generation system, consists of squawks. Feature generation will be the
process of going from squawks to features. The corresponding feature-generator trait
can be defined.

83Structuring feature code

trait Generator {

def generate(squawk: Squawk): Feature

}

The Generator trait defines a feature generator to be an object that implements a
method, generate, that takes a squawk and returns a feature. This is a concrete way of
defining the behavior of feature generation. A given implementation of feature gener-
ation might need all sorts of other functionality, but this is the part that will be com-
mon across all implementations of feature generation. Let’s look at one
implementation of this trait.

 Your team is interested in understanding how squawk length affects squawk popu-
larity. There’s an intuition that even 140 characters is too much to read for some
squawkers, such as hummingbirds. They just get bored too quickly. Conversely, vul-
tures have been known to stare at the same squawk for hours on end, so long posts are
rarely a problem for them. For you to be able to build a recommendation model that
will surface relevant content to these disparate audiences, you’ll need to encode some
of the data around squawk length as a feature. This can easily be implemented using
the Generator trait.

 As discussed before, the idea of length can be captured using the technique of bin-
ning to reduce your numeric data to categories. There’s not much difference between
a 72-character squawk and a 73-character squawk; you’re just trying to capture the
approximate size of a squawk. You’ll divide squawks into three categories based on
length: short, moderate, and long. You’ll define your thresholds between the catego-
ries to be at the thirds of the total possible length. Implemented according to your
Generator trait, you get something like the following listing.

object SquawkLengthCategory extends Generator {

val ModerateSquawkThreshold = 47
val LongSquawkThreshold = 94

private def extract(squawk: Squawk): IntFeature = {
IntFeature("squawkLength", squawk.text.length)

}

private def transform(lengthFeature: IntFeature): IntFeature = {

Listing 4.12 A feature-generator trait

Listing 4.13 A categorical feature generator

Defines a generator as an object
that extends the Generator trait

Constant thresholds
to compare against

Extracting: uses the length
of the squawk to instantiate
an IntFeature

Transforming: takes the
IntFeature of length, returns

the IntFeature of category

84 CHAPTER 4 Generating features

val squawkLengthCategory = lengthFeature match {
case IntFeature(_, length) if length < ModerateSquawkThreshold => 1
case IntFeature(_, length) if length < LongSquawkThreshold => 2
case _ => 3

}

IntFeature("squawkLengthCategory", squawkLengthCategory)
}

def generate(squawk: Squawk): IntFeature = {
transform(extract(squawk))

}
}

This generator is defined in terms of a singleton object. You don’t need to use instances
of a class, because all the generation operations are themselves pure functions.

 Internal to your implementation of the feature generator, you still used a concept
of extraction and transformation, even though you now only expose a generate
method as the public API to this object. Though that may not always seem necessary, it
can be helpful to define all extraction and transformation operations in a consistent
manner using feature-based type signatures. This can make it easier to compose and
reuse code.

 Reuse of code is a huge issue in feature-generation functionality. In a given system,
many feature generators will be performing operations very similar to each other.

 A given transform might be used dozens of times if it’s factored out and reusable.
If you don’t think about such concerns up front, you may find that your team has
reimplemented some transform, like averaging five different times in subtly different
ways across your feature-generation codebase. That can lead to tricky bugs and
bloated code.

 You don’t want your feature-generation code to be messier than a tree full of mar-
mosets! Let’s take a closer look at the structure of your generator functionality. The
transform function in listing 4.13 was doing something you might wind up doing a lot
in your codebase: categorizing according to some threshold. Let’s look at it again.

private def transform(lengthFeature: IntFeature): IntFeature = {
val squawkLengthCategory = lengthFeature match {

case IntFeature(_, length) if length < ModerateSquawkThreshold => 1
case IntFeature(_, length) if length < LongSquawkThreshold => 2
case _ => 3

}

Listing 4.14 Categorization using pattern matching

Uses a pattern-matching structure
to determine which category the
squawk length falls into

Returns Int for a category
(for ease of use in model

learning)

Returns a category of 3, a long
squawk, in all other cases

Returns a
category as a
new IntFeature

Generating: extracts a feature from
the squawk and then transforms it
to a categorical IntFeature

85Structuring feature code

You definitely shouldn’t be implementing a comparison against thresholds more than
once, so let’s find a way to pull that code out and make it reusable. It’s also weird that
you had to define the class label integers yourself. Ideally, you’d just have to worry
about your thresholds and nothing else.

 Let’s pull out the common parts of this code for reuse and make it more general in
the process. The code in the next listing shows one way of doing this. It’s a little dense,
so we’ll walk through it in detail.

object CategoricalTransforms {

def categorize(thresholds: List[Int]): (Int) => Int = {
(dataPoint: Int) => {

thresholds.sorted
.zipWithIndex
.find {
case (threshold, i) => dataPoint < threshold

}.getOrElse((None, -1))
._2

}
}

}

This solution uses a few techniques that you may not have seen before. For one, this
function’s return type is (Int) => Int, a function that takes an integer and returns an
integer. In this case, the function returned will categorize a given integer according to
the thresholds previously provided.

 The thresholds and categories are also zipped together so they can be operated on
as a pair of related values (in the form of a tuple). Zipping, or convolution as it’s some-
times called, is a powerful technique that’s commonly used in Scala and other lan-
guages in the functional programming tradition. The name zip comes from the
similarity to the action of a zipper. In this case, you’re using a special sort of zip opera-
tion that conveniently provides you indices corresponding to the number the ele-
ments in the collection being zipped over. This approach to producing indices is far
more elegant than C-style iteration using a mutable counter, which you may have seen
in other languages, such as Java and C++.

 After zipping over the values, you use another new function, find, with which you
can define the element of a collection you’re looking for in terms of a predicate. Predi-
cates are Boolean functions that are either true or false, depending on their values.
They’re commonly used in mathematics, logic, and various forms of programming

Listing 4.15 Generalized categorization

Singleton object to
hold a pure function

Only takes a list of
thresholds as input

Returns an
anonymous

categorization
function that takes
Int as an argument

Ensures that a list of thresholds
is sorted, because categorization
relies on it

Zips up a list of thresholds
and corresponding indices

(used as category labels)

Finds an entry that satisfies
the case clause predicate Defines a

passing case
as being when
a data point is

less than the
threshold

Gets a matching
value out of an

option or returns a
sentinel value of –1
when matching fails

Takes a second
element out of a

tuple, which is the
category label (in

integer form)

86 CHAPTER 4 Generating features

such as logic and functional programming. In this usage, the predicate gives you a
clear syntax for defining what constitutes falling into a category bucket.

 This code also deals with uncertainty in external usage in ways that you haven’t
before. Specifically, it sorts the categories, because they might not be provided in a
sorted list, but your algorithm relies on operating on them in order. Also, the find
function returns an Option because the find operation may or may not find a match-
ing value. In this case, you use the value –1 to indicate an unusable category, but how
a categorization failure should be handled depends a lot on how the functionality will
be integrated in the client generator code. When you factor out common feature
transforms to shared functions like this, you should take into account the possibilities
of future broad usage of the transform. By implementing it with these extra guaran-
tees, you reduce the chances that someone will use your categorization functionality
in the future and not get the results they wanted.

 The code in listing 4.15 might be a bit harder to understand than the original
implementation in listings 4.13 and 4.14. Your refactored version does more work to
give you a more general and robust version of categorization. You may not expect
every implementer of a feature generator to go through this much work for a simple
transform, but because you’ve factored out this functionality to shared, reusable code,
they don’t have to. Any feature-generation functionality needing to categorize values
according to a list of thresholds can now call this function. The transform from list-
ings 4.13 and 4.14 can now be replaced with the very simple version in listing 4.16. You
still have a relatively complex implementation of categorization in listing 4.15, but
now, that complex implementation has been factored out to a separate component,
which is more general and reusable. As you can see in the next listing, the callers of
that functionality, like this transform function, can be quite simple.

import CategoricalTransforms.categorize

private def transform(lengthFeature: IntFeature): IntFeature = {
val squawkLengthCategory = categorize(Thresholds)

➥ (lengthFeature.value)
IntFeature("squawkLengthCategory", squawkLengthCategory)

}

Once you have dozens of categorical features, this sort of design strategy will make
your life a lot easier. Categorization is now simple to plug in and easy to refactor
should you decide to change how you want it implemented.

4.5.2 Feature set composition

You’ve seen how you can choose among the features you produced, but there’s actu-
ally a zeroth step that’s necessary in some machine learning systems. Before you even

Listing 4.16 Refactored categorization transform

Creates the categorization function and
applies it to the value for categorization

87Structuring feature code

begin the process of feature generation, you may want to choose which feature gener-
ators should be executed. Different models need different features provided to them.
Moreover, sometimes you need to apply specific overrides to your normal usage of
data because of business rules, privacy concerns, or legal reasons.

 In the case of Pidg’n, you have some unique challenges due to your global scale. Dif-
ferent regions have different regulatory regimes governing the use of their citizens’
data. Recently, a new government has come to power in the rainforests of Panama.

 The new minister of commerce, an implacable poison-dart frog, has announced
new regulation restricting the use of social-media user data for non-rainforest pur-
poses. After consultation with your lawyers, you decide that the new law means that
features using data from rainforest users should only be used in the context of models
to be applied on recommendations for residents of the rainforest.

 Let’s look at what impact this change might have on your codebase. To make things
a bit more concise, let’s define a simple trait to allow you to make simplified generators
quickly. This will be a helper to allow you to skip over generator-implementation details
that aren’t relevant to feature-set composition. The next listing defines a stub feature
generator that returns random integers.

trait StubGenerator extends Generator {
def generate(squawk: Squawk) = {

IntFeature("dummyFeature", Random.nextInt())
}

}

Using this simple helper trait, you can now explore some of the possible impacts that
the rainforest data-usage rules might have on your feature-generation code. Let’s say the
code responsible for assembling your feature generators looks like the following listing.

object SquawkLanguage extends StubGenerator {}

object HasImage extends StubGenerator {}

object UserData extends StubGenerator {}

val featureGenerators = Set(SquawkLanguage, HasImage, UserData)

Listing 4.17 A stub feature-generator trait

Listing 4.18 Initial feature set composition

Implementation of the generate method
for implementers of trait to use

Returns random integers

Normal feature generator about the
language the squawk was written in Normal feature

generator about
whether the squawk
contains an image

User-data
feature

generator
that must

be changed

Set of all the feature generators
to execute to produce data

88 CHAPTER 4 Generating features

Now you need to restructure this code to have one feature set produced for your normal,
global models and one feature set for your rainforest models, as shown in figure 4.3. The
following listing shows an approach to defining these two different sets of feature
generators.

object GlobalUserData extends StubGenerator {}

object RainforestUserData extends StubGenerator {}

val globalFeatureGenerators = Set(SquawkLanguage, HasImage,

➥ GlobalUserData)

val rainforestFeatureGenerators = Set(SquawkLanguage, HasImage,

➥ RainforestUserData)

You could stop with this implementation if you chose. As long as the rainforest feature
generators are being used for rainforest models, you’ve done what the frog asked. But
there are reasons to keep working on this problem. Machine learning systems are
incredibly complicated to implement. Common feature-generation functionality can
get reused in all sorts of places. The implementation in listing 4.19 is correct, but with
Pidg’n’s rapid growth, new engineers unfamiliar with this data-usage issue might
refactor this code in such a way as to misuse rainforest feature data.

 Let’s see if you can make misusing this data even harder by defining a trait that
allows you to mark code as having rainforest user data in it.

Listing 4.19 Multiple feature sets

Figure 4.3 Multiple
feature-generator sets

User-data feature generator that will
only access non-rainforest data User-data feature

generator that
will only access
rainforest data

Set of features available to
be used on global models

Set of features available to
be used on rainforest models

89Structuring feature code

trait

➥ RainforestData {
self =>
require(rainforestContext(),

s"${self.getClass} uses rainforest data outside of a

➥ rainforest context.")

private def rainforestContext() = {
val environment = Option(System.getenv("RAINFOREST"))
environment.isDefined && environment.get.toBoolean

}
}

object SafeRainforestUserData extends StubGenerator

➥ with RainforestData {}

val safeRainforestFeatureGenerators = Set(SquawkLanguage,

➥ HasImage, SafeRainforestUserData)

This code will throw an exception unless you’ve explicitly defined an environment
variable RAINFOREST and set it to TRUE. If you want to see this switch in action, you can
export that variable in a terminal window, if you’re using macOS or Linux.

export RAINFOREST=TRUE

Then you can execute the code from listing 4.20 again, in the same terminal window,
without getting exceptions. That’s similar to how you can use this in your production
feature-generation jobs. Using any of several different mechanisms in your
configuration, build, or job-orchestration functionality, you can ensure that this variable
is set properly for rainforest feature-generation jobs and not set for global feature-
generation jobs. A new engineer creating a new feature-generation job for some other
purpose would have no reason to set this variable. If that engineer misused the rainforest
feature generator, that misuse would immediately manifest the first time the job was
executed in any form.

Listing 4.20 Ensuring correct usage of rainforest data

Listing 4.21 Exporting an environment variable

Defines a trait for the
usage of rainforest data

Says all instances
of this trait must

execute the
following code Requires that rainforest

environment validation
passes

Prints a message
explaining disallowed
usage in the event of

not being in the
rainforest context

Validation method ensuring
that the code is being called
in the rainforest context

Retrieves the
rainforest

environment
variable

Checks that the value
exists and is true

Defines a feature
generator for
the rainforest

user data
Assembles feature generators
to use for the rainforest data

Configuration
Using environment variables is one of many different methods to configure compo-
nents of your machine learning system. It has the advantage of being simple to get
started with and broadly supported.

90 CHAPTER 4 Generating features

4.6 Applications
You’re probably not an arboreal animal, and you may not even operate a microblog-
ging service. But if you’re doing machine learning, you’re probably building features
at some point.

 In advertising systems, you can build features that capture users’ past interactions
with various types of products. If a user spends all afternoon looking at different lap-
tops, you probably want to show them an ad for a laptop or maybe a case, but an ad for
a sweater wouldn’t make a lot of sense. That feature about which types of products the
user had been looking at would help the machine-learned model figure that out and
make the right recommendation.

 At a political polling organization, you could build features pertaining to the
demographics of different voters. Things like the average income, education, and
home property value could be encoded into features about voting districts. Then
those features could be used to learn models about which party a given voting district
is likely to vote for.

 The applications of features are as endless as the applications of machine learning
as a technique. They allow you to encode human intelligence about the problem in a
way that a model-learning algorithm can use that intelligence. Machine learning sys-
tems are not black-box systems that perform magic tricks. You, the system developer,
are the one instructing it how to solve the problem, and features are a big part of how
you encode that information.

4.7 Reactivities
This chapter covered a lot, but if you’re still interested in learning more about fea-
tures, there’s definitely more to explore. Here are some reactivities to take you even
deeper into the world of features:

 Implement two or more feature extractors of your own. To do this, you’ll probably want
to choose some sort of base dataset to work with. If you don’t have anything mean-
ingful at hand, you can often use text files and then extract features from the text.
Spark has some basic text-processing functionality built in, which you may find
helpful. Alternatively, random numbers organized into tabular data can work just

(continued)
As your machine learning system grows in complexity, you’ll want to ensure that you
have a well-thought-out plan for dealing with configuration. After all, properties of your
machine learning system set as configurations can determine a lot about whether it
remains responsive in the face of errors or changes in load. Part 3 of this book
addresses most of these issues, where we consider the challenges of operating a
machine learning system. The good news is that you’ll find a lot of versatile tools from
the Scala and big data ecosystems that will help you tame some of the complexity of
dealing with configurations.

91Summary

as well for an activity like this. If you do want to use real data, the UCI Machine
Learning Repository at https://archive.ics.uci.edu/ml/index.php is one of the
best sources of datasets. Whatever data you use, the point is to decide for yourself
what might be some interesting transformations to apply to this dataset.

 Implement feature-selection functionality. Using the feature extractors you created in
the previous reactivity (or some other extractors), define some basis for includ-
ing or excluding a given feature within the final output. This could include cri-
teria like the following:
– Proportion of nonzero values.
– Number of distinct values.
– Externally defined business rule/policy. The goal is to ensure that the

instances produced by your feature-extraction functionality only include the
features that you define as valid.

 Evaluate the reactivity of an existing feature-extraction pipeline. If you did the previous
two exercises, you can evaluate your own implementation. Alternatively, you can
examine examples from open source projects like Spark. As you examine the
feature-extraction pipeline, ask yourself questions like the following:
– Can I find the feature-transform function? Is it implemented as a pure func-

tion, or does it have some sort of side effects? Can I easily reuse this trans-
form in other feature extractors?

– How will bad inputs be handled? Will errors be returned to the user?
– How will the pipeline behave when it has to handle a thousand records? A

million? A billion?
– What can I discern about the feature extractors from the persisted output?

Can I determine when the features were extracted? With which feature
extractors?

– How could I use these feature extractors to make a prediction on a new
instance of unseen data?

Summary
 Like chicks cracking through eggs and entering the world of real birds, features

are our entry points into the process of building intelligence into a machine
learning system. Although they haven’t always gotten the attention they
deserve, features are a large and crucial part of a machine learning system.

 It’s easy to begin writing feature-generation functionality. But that doesn’t mean
your feature-generation pipeline should be implemented with anything less than
the same rigor you’d apply to your real-time predictive application. Feature-
generation pipelines can and should be awesome applications that live up to all
the reactive traits.

 Feature extraction is the process of producing semantically meaningful, derived
representations of raw data.

92 CHAPTER 4 Generating features

 Features can be transformed in various ways to make them easier to learn from.
 You can select among all the features you have to make the model-learning pro-

cess easier and more successful.
 Feature extractors and transformers should be well structured for composition

and reuse.
 Feature-generation pipelines should be assembled into a series of immutable

transformations (pure functions) that can easily be serialized and reused.
 Features that rely on external resources should be built with resilience in mind.

We’re not remotely done with features. In chapter 5, you’ll use features in the learn-
ing of models. In chapter 6, you’ll generate features when you make predictions about
unseen data. Beyond that, in part 3 of the book, we’ll get into more-advanced aspects
of generating and using features.

93

Learning models

Continuing on our journey through
the phases of a machine learning
system, we now arrive at model
learning (see figure 5.1). You can
think of this part as that day when
you were very young and looked up
at a dark sky and decided that, based
on past experience, it just might
rain. The model you learned was
dark clouds lead to rain. Although you
may not remember it well, you fig-
ured out that model by reasoning
about your past experiences with
dark and bright days and whether
you got rained on.

This chapter covers
 Implementing model-learning algorithms

 Using Spark’s model-learning capabilities

 Handling third-party code

Figure 5.1 Phases of machine learning

94 CHAPTER 5 Learning models

 That process you went through of reasoning about past experiences to develop a
model that could be applied to future situations is analogous to what we do in the
model-learning phase of a machine learning system. As I defined it in chapter 1,
machine learning is learning from data, and this is the step where we do that learning.
We’ll run a model-learning algorithm over our features to produce a model. In the con-
text of a machine learning system, a model is a way of encoding the mapping from fea-
tures to concepts. It’s a way of generalizing all the information in the training instances.

 In software terms, a model is a program that was instantiated with instances that
can now return predictions when called with features. This definition is shown in a
stub implementation in the following listing.

class Model(features: List[Instance]) {

def predict(features: Set[Feature]): Label = ???

}

The implementations of model-learning algorithms are certainly far more complex
than this stub implementation, but at a high level this is all we’re doing from a soft-
ware perspective. There can be incredibly sophisticated algorithms behind the pro-
cess instantiating a new model, and I’ll discuss some of them in this chapter. But the
topic of how model-learning algorithms learn from data is huge and is the focus of
countless other books. Accordingly, I’ll try to cover just enough for you to be able to
understand what model-learning algorithms do.

 Then we’ll do what most engineers do when implementing machine learning sys-
tems: call standard library implementations of common model-learning algorithms.
Spark has some useful functionality for learning models in MLlib, its machine learning
library. We’ll build on our usage of MLlib from chapter 4 and take our pipelines all the
way to learned models.

 MLlib isn’t the only machine learning library in the world, so we’ll also spend time
exploring how to work with libraries that aren’t as easy to use from our Spark pipe-
lines written in Scala. This is a common but challenging problem that data teams have
to face all the time, and we’ll explore some tactics to reduce the pain involved.

 Being able to learn models from data is an incredible capability. It’s one of the
most significant achievements in the history of computer science. That’s why, in this
chapter, we’re going to put it to use in the service of a noble goal: finding love.

5.1 Implementing learning algorithms
Timber is a mobile dating app for bears. Single male and female bears who are look-
ing for love post their pictures in their profile on Timber. Then they can see pictures
of other single bears that the app recommends to them. If a bear likes what it sees, the
bear swipes right on the picture of that bear.

Listing 5.1 A stub model

Instantiates a model
with a list of instances
(features and concept
labels)Predicts labels when given

new sets of features

95Implementing learning algorithms

 Behind the scenes of all of this furry romance is a sophisticated recommendation
model, built by your data-science team at Timber. This chapter follows along as you
begin to build that model. The team’s goal is to predict which bears will like each
other so that the Timber app can make recommendations to users. Only when two
bears swipe right on each other are they connected, so it’s crucial for the health of the
app that users keep getting introduced to new bears they’d like to meet.

 When two bears like each other and both swipe right, indicating that they’d like
to meet, this is called a match by your Timber data-science team. The team plans to
run all possible pairs of active users through the model and get predictions of which
ones are a likely match. Only those predicted as matches (paired) will be shown to
the users.

 To begin building their model, your team only has its historical data about who
their users are and which ones ended up matching. They decide to frame the problem
of predicting which bears will match as a binary classification problem. Whether or
not a given pair of users matched will be used as class label. All the data about the
users will be used to build features.

 As you saw in chapter 4, building features can be a very complicated endeavor. The
Timber team has decided to start by building features around user similarity. When a
bear signs up on Timber, they answer various questions to fill out their profile on the
app:

 What’s your favorite food?
 Do you like to go out or are you more of a cave-body?
 Do you want to have cubs someday?

In the first version of their feature-generation functionality, your team compared the
answers of each pair of users to produce features saying whether or not their answers
were the same. For example, if two bears both answered that their favorite food was
salmon, that would be recorded as a true feature value, but if one bear preferred
salmon and another preferred berries, then that would be recorded as a false feature
value. This produces instances like the ones shown in table 5.1, which uses 0 for false
and 1 for true.

Table 5.1 Similarity instances

Favorite food Go out Cubs Match

1 0 0 0

1 1 1 1

0 1 1 1

0 1 0 0

1 1 1 0

96 CHAPTER 5 Learning models

Using similarity data like this, you could perform all sorts of ad hoc analyses and
develop manual rules. But Timber has lots of users and is growing fast. It needs an
automated system to reason about this data at scale.

5.1.1 Bayesian modeling

In their first implementation of the model-learning system, the team used a technique
called Naive Bayes. Before we get into how Naive Bayes works and how it can be imple-
mented, we need to cover Bayes’ rule, which is the basis for the Naive Bayes technique.
Bayes’ rule is a foundational technique used in some forms of statistics.

 To understand Bayes’ rule, let’s simplify your data even more. Let’s assume that
you only know whether two bears share the same favorite food and if they matched.
Then your team could talk about the probability that two bears will match if they share
the same favorite food.

 The following listing introduces some notation to discuss how you could use Bayes’
rule in this case.

F
M
P(F|M)
P(M|F)
P(M|F) = P(F|M)*P(M)÷P(F)

Bayes’ rule states that this probability can be calculated as follows: P(F|M)*P(M)÷P(F),
the probability of having the same favorite food, given that they were a match, multi-
plied by the probability of a match, divided by the probability of having the same
favorite food.

 Using the data in table 5.1, you can calculate those values.

2/5 = 0.4
3/5 = 0.6
1/2 = 0.5
0.5 * 0.4 ÷ 0.6 = 0.33

This calculation results in a 1/3 probability of being a match given that two bears
share the same favorite food.

Listing 5.2 Notation for Bayes’ rule

Listing 5.3 Calculating an application of Bayes’ rule

Notation for the
same favorite foodNotation

for a match
on the app

Probability of having the
same favorite food, given
they were a match

Probability that two bears will be a match
given they have same favorite food

Calculation for
this probability

Probability of a
match in that dataset

Probability
of having

 the same
favorite food

Probability of having the
same favorite food given
they were a match

Probability of being a match given two
bears share the same favorite food

97Implementing learning algorithms

 Bayes’ rule can be generalized to apply to many different features using the Naive
Bayes technique. Let’s use G to represent both bears preferring to go out or stay in the
den and C to indicate agreeing on the decision to have cubs. Let’s also refer to a spe-
cific combination of feature values as V. That’s meant to provide a way to talk about
the probability of liking the same food and both liking to go out, but not agreeing on
raising cubs (true, true, false) as different from bears who agree on everything
(true, true, true).

 With this notation in place, you can now use Bayes’ rule with all your team’s original
features as P(F|M)*P(G|M)*P(C|M)*P(M)÷P(V). By multiplying all the probabilities
together, you can get the probability of a match, given the values of all of your features.

Table 5.2 shows what all those probabilities are, based on your dataset.

To be able to calculate the probability of a given combination of feature values, P(V),
you’ll have to try to predict on some data.

 Let’s say you’re trying to compute the probability that Ping, a panda, and Greg, a
grizzly bear, will be a match (figure 5.2). They don’t agree on food or whether they’d
like to have cubs someday, but they are both den-bodies, not liking to go out much.
Does the data indicate that these two are likely to be a match on Timber?

 In this case, P(V) is the sum of 0.2, 0.1, and 0.2 or 0.5. Now you can evaluate Bayes’
rule. Plugging in the values from table 5.2, you get 0.5 * 1.0 * 1.0 * 0.4 / (0.2 + 0.1
+ 0.2) = 0.4. Bayes’ rule is modestly confident that the two of them will hit it off, so
the app might recommend them to each other, depending on the scores of their
other candidate matches.

Table 5.2 Probabilities

Term Fraction Probability

P(F|M) 1/2 0.5

P(G|M) 2/2 1.0

P(C|M) 2/2 1.0

P(M) 2/5 0.4

Independence
It’s often not valid statistically to assume that you can multiply all those probabilities
together. Doing so presumes that the probabilities of each feature value are indepen-
dent from each other—that they never vary together. That’s why this technique is
referred to as naive, because it fails to take into account the possibility of dependence
between the features. Despite that limitation, Naive Bayes has been empirically shown
to be a useful technique.

98 CHAPTER 5 Learning models

5.1.2 Implementing Naive Bayes

Now that you’ve seen how Naive Bayes works, let’s see how you can implement it so it
can be run as part of Timber’s production model-learning pipeline. To begin, you
need to build up some training instances to use to train your model. You’ll build on
the techniques you learned in chapter 4 for handling features and extend that code.
The following listing shows some of the types you used to manage features and labels
before, as well as a way of bringing them together into instances.

trait FeatureType[V] {
val name: String

}

trait Feature[V] extends FeatureType[V] {
val value: V

}

trait Label[V] extends Feature[V]

case class BooleanFeature(name: String, value: Boolean) extends

➥ Feature[Boolean]

case class BooleanLabel(name: String, value: Boolean) extends Label[Boolean]

case class BooleanInstance(features: Set[BooleanFeature], label: BooleanLabel)

This is all review from chapter 4. With these types in place, you’ll be able to set up
your model-learning algorithm to reason about features and labels in the form of
instances.

Listing 5.4 Features, labels, and instances

Figure 5.2 Timber profile screens

Feature-type implementation
from chapter 4, requiring a
type and a name

Feature implementation
from before, requiring a
value of a given type

Label implementation from
before, defining class labels
as a special type of feature

Defines
Boolean
features

Defines Boolean labels

Defines Boolean instances to contain sets
of Boolean features and a Boolean label

99Implementing learning algorithms

 Now you can implement the Naive Bayes model. First, you’ll assume that you can
initialize your implementation with some list of training instances. Listing 5.5 creates
a simple training instance to allow you to get started. You’ll factor this out to a con-
structor parameter shortly, but this fixtured version of the data will allow you to start
writing code to process the instances.

val instances = List(BooleanInstance(
Set(BooleanFeature("food", true),

BooleanFeature("goOut", true),
BooleanFeature("cubs", true)),

BooleanLabel("match", true)))

Then you’ll operate on the instances within your training set that have true labels and
calculate P(M), the overall probability of a match.

val trueInstances = instances.filter(i => i.label.value)
val probabilityTrue = trueInstances.size.toDouble / instances.size

Then you can build up the probabilities of each given feature, given a match (for exam-
ple, P(F|M), the probability of having the same favorite food given that a couple was a
match). Because you could have an arbitrary number of features, you’ll build up the
unique set of all features first and then produce the probabilities for each one you find.

val featureTypes = instances.flatMap(i => i.features.map(f => f.name)).toSet

val featureProbabilities = featureTypes.toList.map {
featureType =>

trueInstances.map { i =>
i.features.filter { f =>

f.name equals featureType
}.count {

f => f.value
}

}.sum.toDouble / trueInstances.size
}

Listing 5.5 Training instances

Listing 5.6 Positive training instances

Listing 5.7 Feature probabilities

Creates a list containing
only a single instanceCreates a

set of all
features

Creates a label value

Filters instances to only the
ones with true class labels

Calculates P(M), the overall
probability of a match

Builds a set of all unique feature
types in the training set

Maps over
all distinct
feature typesFor each feature, maps

over all instances with
true class labels

Uses a filter to match to a
current feature by name

Counts a
feature
value if

it’s true

Sums up all positive examples, dividing
by the total number of true instances

100 CHAPTER 5 Learning models

Now that you’ve calculated all the terms in the numerator of the equation, you can
calculate the entire numerator. The following listing uses multiplication, *, as a
higher-order function to reduce over your list of feature probabilities before multiply-
ing by P(M), the probability of a match.

val numerator = featureProbabilities.reduceLeft(_ * _) * probabilityTrue

Now you just need to be able to calculate P(V), the probability of a given feature vec-
tor. The next listing shows a simple function to perform that calculation for an arbi-
trary set of features.

def probabilityFeatureVector(features: Set[BooleanFeature]) = {
val matchingInstances = instances.count(i => i.features == features)
matchingInstances.toDouble / instances.size

}

With all the pieces now in place, writing the predict function is straightforward.
Given a new feature vector, calculate the denominator and divide the numerator by it.

def predict(features: Set[BooleanFeature]) = {
numerator / probabilityFeatureVector(features)

}

As a final refactor, let’s put all this code inside a class and pass instances at the time of
construction. The next listing shows all the modeling code from before, refactored
into a class.

class NaiveBayesModel(instances: List[BooleanInstance]) {

val trueInstances = instances.filter(i => i.label.value)
val probabilityTrue = trueInstances.size.toDouble / instances.size

val featureTypes = instances.flatMap(i => i.features.map(f => f.name)).toSet

val featureProbabilities = featureTypes.toList.map {
featureType =>

trueInstances.map { i =>
i.features.filter { f =>
f.name equals featureType

}.count {

Listing 5.8 Numerator

Listing 5.9 Feature vector

Listing 5.10 Prediction function

Listing 5.11 Naive Bayes model

Counts the instances
with the matching

feature values
Divides the number of matching instances over

the total number of instances to get the P(V)

Calculates probability by dividing
a precomputed numerator by a
denominator for a given instance

Instantiates
the model with
training instances

101Implementing learning algorithms

f => f.value
}

}.sum.toDouble / trueInstances.size
}

val numerator = featureProbabilities.reduceLeft(_ * _) * probabilityTrue

def probabilityFeatureVector(features: Set[BooleanFeature]) = {
val matchingInstances = instances.count(i => i.features == features)
matchingInstances.toDouble / instances.size

}

def predict(features: Set[BooleanFeature]) = {
numerator / probabilityFeatureVector(features)

}

}

This implementation doesn’t need to do much work when new feature vectors come
in for prediction. As part of the instantiation of the class, the model was effectively
trained, and the model parameters, the various probabilities, are now held in the
internal state of the given model instance.

 You can try out this code by writing a simple test.

test("It can learn a model and predict") {
val trainingInstances = List(

BooleanInstance(
Set(BooleanFeature("food", true),

BooleanFeature("goOut", true),
BooleanFeature("cubs", true)),

BooleanLabel("match", true)),
BooleanInstance(

Set(BooleanFeature("food", true),
BooleanFeature("goOut", true),
BooleanFeature("cubs", false)),

BooleanLabel("match", false)),
BooleanInstance(

Set(BooleanFeature("food", true),
BooleanFeature("goOut", true),
BooleanFeature("cubs", false)),

BooleanLabel("match", false)))

val testFeatureVector = Set(BooleanFeature("food", true),
BooleanFeature("goOut", true),
BooleanFeature("cubs", false))

val model = new NaiveBayesModel(trainingInstances)

val prediction = model.predict(testFeatureVector)

assert(prediction == 0.5)
}

Listing 5.12 Testing the Naive Bayes model

Sets up a test of model
learning and prediction

Creates some training instances
to learn the model with

Creates a test
feature vector
to predict on

Instantiates a class
and, thus, trains
the model

Predicts
on the test
feature vectorAsserts that the

result is 0.5

102 CHAPTER 5 Learning models

This implementation is a pretty good representation of the mathematical process that
you went through by hand before. It took your Timber data-science team some time to
get this implementation figured out. Though it definitely predicts matches, this imple-
mentation isn’t perfect. For one thing, it can only handle Boolean feature values and
Boolean labels. It also doesn’t handle things like not finding the exact feature vector
in the training instances that you’re trying to predict on now.

 There are things to like about this approach to analyzing data. By implementing
the mathematics of Naive Bayes as runnable code, you could run it over as many train-
ing instances with as many features as your server can handle. Of course, this imple-
mentation is consistent in its approach, as contrasted with any ad hoc, manual-analysis
approach. Another nice feature of this implementation is that it’s verifiable—you can
write more tests to demonstrate that this implementation is correct.

 I hope you agree that there’s a lot of benefit to using machine learning to build a
recommendation model. You can certainly take things even further. Naive Bayes is just
one algorithm; there’s no reason to believe that it’s the best algorithm for this prob-
lem. If you want to explore more learning algorithms (and I hope you do!), then you
may not want to implement them all yourself. There’s no need to build everything
from scratch. Tools like Spark and MLlib have a lot of functionality that you can use to
explore model-learning algorithms even more.

5.2 Using MLlib
In chapters 2 and 4, you got a taste of Spark’s machine learning capabilities from
MLlib, its machine learning library. It has a wide range of machine learning function-
ality that can help you explore various modeling techniques.

 For example, MLlib already has a very capable and sophisticated implementation
of Naive Bayes. Perhaps most importantly, you can train the MLlib implementation of
Naive Bayes over datasets of arbitrary size using Spark’s elasticity capabilities. The
comparatively simpler implementation in the previous section is limited to a single
Java process running on a single server.

 Engineers are often excited to port legacy model-learning implementations over to
Spark implementations. The code becomes simpler, the job can become much more
scalable, and taking advantage of other big data tools becomes easier. Data scientists
also stand to gain from this transition. When production machine learning systems use
MLlib functionality, data scientists can experiment with MLlib’s wide range of algo-
rithms. When a modeling approach works well, incorporating it into the production-
data pipelines is easy.

5.2.1 Building an ML pipeline

Let’s get back to the problem of building a better recommendation model for bears
seeking love. The Timber team begins to build out the second version of their model-
learning functionality. This pipeline consumes the features and labels generated by the
upstream feature-generation pipeline. The instances for training and testing the model

103Using MLlib

are persisted in LIBSVM format in flat files. In the future, the team hopes to put this
data into a database, but for this early stage of development, LIBSVM-formatted files
work fine. The next listing shows a sample of that data.

1 1:3 2:4 3:2
0 1:2 2:4 3:1
0 1:1 2:2 3:2

As discussed in chapter 1, instances record the label value in the first position, fol-
lowed by pairs of feature identifiers to feature values.

 The first line of data in listing 5.13 is a true instance with the value 3 for the first
feature, the value 4 for the second feature, and the value 2 for the third feature. For-
mats for storing features like LIBSVM are known as sparse formats, meaning features
can be absent if their values are 0 or unknown. Sparse formats are an alternative to
dense formats, where all features must be present, regardless of their value. Sparse for-
mats are intrinsically more flexible, so the Timber team decides to use LIBSVM for
now. They hope that will make it easier when they eventually adapt their data architec-
ture to persist this data in a document database, with a sparse representation of their
features.

 Data formatted in this way can easily be loaded into the new Spark pipeline, once
you establish the standard configuration for the job.

val session = SparkSession.builder.appName("TimberPipeline").getOrCreate()

val instances = sqlContext.read.format("libsvm").load("/match_data.libsvm")

The functionality that loads LIBSVM data understands the structure of the format, so
a column named features and a column named label will be created automatically.

 With this data loaded, depending on how you want to learn a model, you can use
this DataFrame directly. In this case, let’s take full advantage of the capabilities of the
Spark ML package to perform a bit of preprocessing. You can use two indexers to pro-
cess the features and the labels in the DataFrame of instances. These indexers will ana-
lyze how many different values of features and labels it sees and put that metadata
back into the DataFrame. In this example data, you have all categorical features, so the
indexers will detect that and record that in the metadata in the DataFrame. These cat-
egory values as well as the label values will be mapped to an internal representation of
the values, which can improve the model-learning process. The values and their asso-
ciated metadata will later be used by the model-learning algorithm.

Listing 5.13 Instances in LIBSVM format

Listing 5.14 Loading LIBSVM instances

Creates a new Spark session for the job

Loads an instance data into a DataFrame

104 CHAPTER 5 Learning models

val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(instances)

val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.fit(instances)

It’s worth noting that nothing has been processed yet. Each of these is a Pipeline-
Stage that you’ll fully compose later and then execute. This is more of Spark’s lazy
compositional style.

 Next, you need to split your data into training and testing sets, as shown in list-
ing 5.16. With the testing set, you’ll perform predictions on data that your model
hasn’t seen before. Chapter 6 discusses the topic of testing models in more detail. For
the moment, it’s enough to set aside a random 20% of your data for later use.

val Array(trainingData, testingData) = instances.randomSplit(Array(0.8, 0.2))

Now you can finally set up your model-learning algorithm. Your team at Timber
decides to start with a decision-tree model. A decision tree is a technique that divides the
classification decision into a series of decisions about each feature. Decision trees
work well with categorical features like the ones you’re using, so the team is optimistic
that decision trees may be a good place to start.

val decisionTree = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")

Again, nothing has been learned here; this is just another PipelineStage.
 Before you put this pipeline together and execute it, you need to put in one last

stage to convert from the internal representation of labels to your original one. The
indexers you used in listing 5.16 have the ability to come up with new identifiers for

Listing 5.15 Detecting feature and label values

Listing 5.16 Splitting instances into training and testing sets

Listing 5.17 Decision-tree model

Sets up the StringIndexer to process
labels in instances of DataFrameReads from a

label column Writes transformed
labels to the
indexedLabel columnSets the

DataFrame
to process

Sets up the VectorIndexer
to process feature vectors
in instances of DataFrame

Reads from the
features column

created when the
LIBSVM file was

read and
transformed into

a DataFrame

Writes processed features to
the indexedFeatures column

Sets the DataFrame
to process

Splits the data: 80% for training and 20% for testing

Sets up a new decision-
tree classifierSets which

column the
label is in

Sets which
column the
features
are in

105Using MLlib

the features and labels you provided. But that information isn’t lost, so you can turn
all predictions made by the model back into your original representation, where 1
corresponded to a match. This stage, where you convert back from those internal
label representations into the original labels, is shown in the following listing.

val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels)

Now the pipeline can be composed using Spark ML’s Pipeline construct. The next
listing takes the four PipelineStages that you’ve defined and composes them into a
single runnable unit.

val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer , decisionTree,

➥ labelConverter))

This declarative method of assembling the phases of a pipeline to be run makes it very
easy to create reusable pipeline stages and build variant versions of pipelines using
those stages. With this composed pipeline, you can now execute the pipeline by pro-
cessing your features and learning the model.

val model = pipeline.fit(trainingData)

After all that structuring and composition, this invocation of fit is the step that runs
the whole model and eventually learns the model.

 Now that you have a model, let’s demonstrate that it can do something useful. Typ-
ically, at this point in a pipeline, people attempt to evaluate the model over unseen
data. This phase is called testing the model, as contrasted with training the model.
Chapter 6 discusses this process more, but let’s see a bit of what your model can do by
getting it to predict on some of your testing data.

Listing 5.18 Converting labels

Listing 5.19 Composing a pipeline

Listing 5.20 Learning the model

Sets up the transformer to convert from the
internal label value back to the original value Sets the column

where predictions
can be found

Sets which column
to write converted

labels to Sets what were
original labels, using
the label indexer

Sets up a Pipeline

Sets the stages to
execute in order

Executes the pipeline
and learns the model

106 CHAPTER 5 Learning models

val predictions = model.transform(testingData)

predictions.select("predictedLabel", "label", "features").show(1)

This shows that your model has been learned and you can now predict on unseen
data. At this point, you may be curious about what exactly this model is. Not all model-
learning algorithms produce models that are easy for humans to reason about. But
the decision tree that you used is something you can look at and understand the
learned structure of decisions that the model will make.

val decisionTreeModel = model.stages(2)
.asInstanceOf[DecisionTreeClassificationModel]

println(decisionTreeModel.toDebugString)

Printing the model should produce something like the model shown in the following
listing.

DecisionTreeClassificationModel (uid=dtc_f0924358349f) of depth 1 with 3 nodes
If (feature 0 in {0.0,1.0})
Predict: 0.0

Else (feature 0 not in {0.0,1.0})
Predict: 1.0

This is a simple model; you’re not working with much data, and you haven’t defined
too many features. But all the code you just wrote could be used to scale up to more-
complex models learned over more features, as you’ll see in the next section.

 Beyond being a flexible implementation that can support easy changes in
modeling approaches, this pipeline is also quite reactive, thanks to being built on
top of all the powerful infrastructure provided by Spark. You could easily and quickly
deploy this pipeline to production at scale in the same way you could for any other
Spark application.

Listing 5.21 Predicting

Listing 5.22 Inspecting the model

Listing 5.23 Inspecting the model

Uses the model to predict
on testing data

Prints one of the predictions, the
true label, and the features used

Gets a decision-tree model
from the executed pipeline

Casts it to an instance of the
DecisionTreeClassificationModel

Prints the resulting model

Describes the type and structure of the model

Explains the decision the tree model
will make when predicting on new data

107Using MLlib

5.2.2 Evolving modeling techniques

The other aspect of this design that the team is excited about is that evolving their
approach to a given modeling problem is quick and easy. After this first decision-tree
model-learning pipeline is completed, your team decides to try a related but more
sophisticated technique: random forests. This technique still uses decision trees, but it
uses many of them in combination. Using multiple models in combination with each
other, called an ensemble, is one of the most powerful techniques in all of machine
learning. Rather than trying to get a single model learned on a single dataset using a
single set of model-learning parameters, ensemble modeling techniques improve per-
formance by creating different models, potentially with different strengths in combi-
nation. This is a sort of possible-worlds technique, where you assume that different
models might be right about different aspects of the concept.

 Even though this technique is more sophisticated, and the implementation of the
algorithm is more complicated, this isn’t any harder for you to use than the basic
decision-tree model from before. The code is nearly identical to what you wrote earlier.

val randomForest = new RandomForestClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")

val revisedPipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, randomForest,

 ➥ labelConverter))

val revisedModel = revisedPipeline.fit(trainingData)

val randomForestModel = revisedModel.stages(2)
.asInstanceOf[RandomForestClassificationModel]

println(randomForestModel.toDebugString)

If you execute the code in listing 5.24, you should see a much larger model printed
than you saw for the simple decision-tree model.

RandomForestClassificationModel (uid=rfc_fbfe64b4a427) with 20 trees
Tree 0 (weight 1.0):

If (feature 1 in {0.0})
Predict: 0.0

Else (feature 1 not in {0.0})
Predict: 1.0

Tree 1 (weight 1.0):

Listing 5.24 Learning a random-forest model

Listing 5.25 A random forest model

Sets up a random-forest classifier

Creates a slightly different pipeline,
using a random-forest classifier

Executes the pipeline

Extracts the learned model from
the pipeline for inspection

Prints a representation
of the learned model

Describes the type and
structure of the model

Explains the various decision-tree models
within the larger random-forest model

Given decision tree within the forest,
weighted equally to the other trees

108 CHAPTER 5 Learning models

If (feature 0 in {0.0})
Predict: 0.0

Else (feature 0 not in {0.0})
Predict: 1.0

Tree 2 (weight 1.0):
If (feature 0 in {1.0})
Predict: 0.0

Else (feature 0 not in {1.0})
Predict: 1.0

Tree 3 (weight 1.0):
If (feature 0 in {0.0,1.0})
Predict: 0.0

Else (feature 0 not in {0.0,1.0})
Predict: 1.0

Tree 4 (weight 1.0):
Predict: 1.0

Tree 5 (weight 1.0):
If (feature 1 in {0.0})
Predict: 0.0

Else (feature 1 not in {0.0})
If (feature 0 in {1.0})
Predict: 0.0

Else (feature 0 not in {1.0})
Predict: 1.0

Tree 6 (weight 1.0):
If (feature 2 in {0.0})
Predict: 0.0

Else (feature 2 not in {0.0})
Predict: 1.0

Tree 7 (weight 1.0):
Predict: 1.0

Tree 8 (weight 1.0):
Predict: 0.0

Tree 9 (weight 1.0):
If (feature 0 in {1.0})
Predict: 0.0

Else (feature 0 not in {1.0})
Predict: 1.0

Tree 10 (weight 1.0):
If (feature 0 in {0.0,1.0})
Predict: 0.0

Else (feature 0 not in {0.0,1.0})
Predict: 1.0

Tree 11 (weight 1.0):
If (feature 1 in {0.0})
Predict: 0.0

Else (feature 1 not in {0.0})
Predict: 1.0

Tree 12 (weight 1.0):
If (feature 0 in {0.0,1.0})
Predict: 0.0

Else (feature 0 not in {0.0,1.0})
Predict: 1.0

First branch of a given decision tree,
testing whether the feature is 0

Predicts 0, or false

Second branch of the decision
tree, when the feature is 1

Predicts 1, or true

109Building facades

Tree 13 (weight 1.0):
Predict: 1.0

Tree 14 (weight 1.0):
Predict: 0.0

Tree 15 (weight 1.0):
Predict: 0.0

Tree 16 (weight 1.0):
If (feature 0 in {0.0})
Predict: 0.0

Else (feature 0 not in {0.0})
Predict: 1.0

Tree 17 (weight 1.0):
Predict: 0.0

Tree 18 (weight 1.0):
Predict: 0.0

Tree 19 (weight 1.0):
If (feature 2 in {0.0})
Predict: 0.0

Else (feature 2 not in {0.0})
If (feature 1 in {0.0})
Predict: 0.0

Else (feature 1 not in {0.0})
Predict: 1.0

That’s a lot more modeling sophistication for a trivial change in your code! This is
awesome power to have in a fast-growing dating-app startup. You can easily try out a
wide range of modeling strategies without having to implement them all yourself, and
when you find something that works, it can be rapidly deployed over your whole data-
set. That should add up to a lot more happy ursine couples!

5.3 Building facades
With all these improvements in your model-learning pipeline, the team is looking to
take on more-significant technical challenges. They decide they want to be able to use
cutting-edge techniques like deep learning. Deep learning is a recently developed tech-
nique in machine learning that builds on earlier work in neural networks, a technique
for building learning algorithms that mimic the structure of the brains of animals.

 Although MLlib has support for some forms of neural networks, it doesn’t offer a
lot of the deep learning functionality you may want out of the box, so you’ll need to
figure out how to make that work. There are some efforts to enable deep learning on
Spark, but your team really wants to be able to take advantage of the latest advances as
they happen. The current fashion in deep learning research is to use technologies
accessed via Python, so, ideally, you should find a way to use those technologies in
cooperation with your existing Scala applications. Getting your Scala code to drive
bleeding-edge Python research code certainly could be tricky, but you’ll be able to
pull it off using a pattern called a facade.

 The facade pattern (also known as a wrapper, an adapter, or a connector) is a relatively
well-established technique for integrating third-party libraries. The idea is to write some
new code in your application with the sole responsibility of acting as an intermediary

110 CHAPTER 5 Learning models

between your application and a third-party
library. This intermediary is the facade, and
it’s in charge of harmonizing the API of the
underlying library with the expectations of
your application (figure 5.3).

5.3.1 Learning artistic style

For your first foray into the world of deep
learning, you’ll transform user photos into
the style of famous paintings. The idea is to
help bears get beyond superficial first
impressions and consider what inner
beauty might be lurking just below the fur. To perform these image transformations,
you’ll use an exciting new algorithm called a neural algorithm of artistic style, or just style
net for short. What the style-net technique does is transfer the artistic style of a given
image to the content of another image.

 The open source implementations of the style-net algorithm all rely on various deep
learning frameworks. Your team has chosen to use an implementation that relies on the
TensorFlow framework. TensorFlow is powerful machine learning framework with par-
ticularly good support for deep learning. It was originally developed at Google as part
of the company’s research on machine learning, and deep learning, specifically.

 To install TensorFlow, follow the latest instructions at www.tensorflow.org. Once
you’ve installed TensorFlow, you’ll want to clone the implementation of the style-net
algorithm I’ve provided (https://github.com/jeffreyksmithjr/neural-art-tf). It’s an
adaptation of an implementation called neural-art-tf (https://github.com/woodrush/
neural-art-tf) with some important changes. If you want to clone both repositories for
comparison’s sake, you can.

 To begin learning new models, you first need to download an existing model.
You’ll use this model as part of the input to learning a new model of a given style
image—a famous painting, in this case. The approach you’ll use relies on a pretrained
model from the Visual Geometry Group (VGG) at Oxford. You can download this
model from http://mng.bz/iYlL. You’ll need the .caffemodel file, the model itself,
and the .prototxt file, which describes the structure of the model.

 This model, a large, deep model originally intended for use in image recognition,
is provided in Caffe format. Caffe is another deep learning framework, with different
strengths and weaknesses than TensorFlow.

 To make this model usable by the TensorFlow implementation, you’ll need to use a
simple conversion utility in the neural-art-tf project.

> python ./kaffe/kaffe.py [path.prototxt] [path.caffemodel] vgg

Listing 5.26 Converting a Caffe model for TensorFlow

Converts the model and saves it to a file called vgg

Figure 5.3 Facade pattern

111Building facades

Once you’ve converted the model file, you can begin learning the model of artistic
style for a given painting to apply to a picture of a bear, using the original neural-art-tf
implementation. It was originally intended to be used by being called as a command-
line utility with various arguments for things like the path to the model, the file, and
the number of iterations. Rather than take those arguments from the command line,
let’s first move them up to be parameters in a method.

def produce_art(content_image_path, style_image_path, model_path,

➥ model_type, width, alpha, beta, num_iters):

Then you need to find a way to make this method available to your Scala code. Let’s
try to turn this simple script to run the code into a service that can be called by your
primary pipeline. To do that, you’ll use a Python library called Pyro. Like most Python
libraries, it’s pretty easy to install using pip.

> pip install Pyro4

With Pyro, you can take Python functionality in the scripts in neural-art-tf and make it
available to clients accessing it via the network.

class NeuralServer(object):
def generate(self, content_image_path, style_image_path, model_path,

➥ model_type, width, alpha, beta, num_iters):
produce_art(content_image_path, style_image_path, model_path,

➥ model_type, width, alpha, beta, num_iters)
return True

daemon = Pyro4.Daemon()
ns = Pyro4.locateNS()
uri = daemon.register(NeuralServer)
ns.register("neuralserver", uri)
daemon.requestLoop()

All of listing 5.29 makes it simple for other users of Pyro to find and use the method
that runs the model-learning jobs. The script will run as a daemon, a small utility run-
ning in the background waiting to serve requests. You’ve named it neuralserver and
attempted to register it with a name server. The name server will be responsible for

Listing 5.27 Method parameters

Listing 5.28 Installing Pyro

Listing 5.29 Setting up

Creates a class to
represent your server Defines a method to

expose to clients

Passes arguments to the
underlying produce_art
method

Returns True as the status
once the job has completed

Sets up
the Pyro
daemon

Locates the name server

Registers a server class
with the Pyro daemon
as a Pyro object

Registers the Pyro object
with the name server

Starts the event loop to wait
for calls to the Pyro object

112 CHAPTER 5 Learning models

routing requests for this Pyro object when it’s asked for by name. For all this to work,
you’ll need to start up a Pyro name server and then start the revised server script.

> pyro4-ns

> python neural-art-tf.py

Now let’s figure out how to send requests to run jobs from your Scala client applica-
tion to this Python server application. One of the nice features of Pyro is that it pro-
vides client libraries for use with other runtimes. You can use the Java Pyrolite client
library in your Scala code (https://pythonhosted.org/Pyro4/pyrolite.html). This will
allow you to build a facade around the Python code and the problems inherent in
long-running jobs, using all the same reactive techniques you’ve used elsewhere in
this book.

 To build a more reactive facade, the first thing you can do is ensure more type
safety around the parameters being passed. For example, the command-line version
of neural-art-tf uses a bunch of strongly typed arguments for things such as the type of
model being used. The number of valid model types is tiny compared to the huge
range of possible strings. In Scala, you can capture those arguments that can only take
one of a known set of values as an enumeration.

object ModelType extends Enumeration {
type ModelType = Value
val VGG = Value("VGG")
val I2V = Value("I2V")

}

You can then use type safety to create a better definition of what constitutes a valid
configuration for your job. Let’s use a case class to encapsulate what is a valid job con-
figuration. Moreover, in the following listing, let’s set some default values so you don’t
have to pass all the knowledge about the job setup every time the job is run.

case class JobConfiguration(contentPath: String,
stylePath: String,
modelPath: String,
modelType: ModelType,
width: Integer = 800,

Listing 5.30 Starting a name server

Listing 5.31 A model-type enumeration

Listing 5.32 A job-configuration case class

Starts a name server

Starts a job-running server

Creates an Enumeration
named ModelType Defines a ModelType

value for use in the
type system

Defines
VGG as one

valid type
of model

Defines I2V (for Image2Vector)
as another type of model

Path to the content
image, user picture Path to the style image,

famous painting

Path to the pretrained
model to useType of

pretrained model

Width of the resulting image,
defaulting to 800 pixels

113Building facades

alpha: java.lang.Double = 1.0,
beta: java.lang.Double = 200.0,
iterations: Integer = 5000)

Note that because the Pyrolite client library is a Java library, your case class needs to
use Java types for doubles and integers. But beyond specifying that in the case-class
type signatures, there’s nothing else you need to do; Scala will automatically perform
the conversions from Scala types to the underlying Java types.

 Using this configuration case class makes it easier for you to ensure that your con-
figurations are valid. With a valid configuration, such as the one in the next listing,
you can submit your job with more confidence that the arguments are sufficient for
the Python-server application.

val jobConfiguration = JobConfiguration("./sloth_bear.png",
"./senecio.jpg",
"./vgg",
ModelType.VGG,
iterations = 1000)

Then locate the name server and connect to the Pyro object for your job server. In this
example, you’re only using the networking capabilities of Pyro to give you a way of
communicating between your Python program and your Scala program, so you won’t
need to deal with any networking complexity, although the process would be similar
in a distributed implementation.

val ns = NameServerProxy.locateNS(null)
val remoteServer = new PyroProxy(ns.lookup("neuralserver"))

Now, you can send your configuration off to be processed—but let’s think through what
that means first. That request is to a separate running process, and it could have just as
easily been a separate process on another machine. The job might take quite a while to
run. Deep learning techniques are famous for requiring very powerful hardware and
taking a long time to execute. If you really want your application to be reactive, you

Listing 5.33 A job configuration

Listing 5.34 Connecting to the server

Alpha parameter, for weight of
content, defaulting to 1.0

Beta parameter,
for weight of

style, defaulting
to 200.0

Number of iterations to learn the
model over, defaulting to 5000

Creates a configuration with content
image of an attractive sloth bear

Sets the
style image
to a famous

painting
Model file

Type-safe
model type Overrides the number of iterations

Finds the name server on the same
machine, passing in a null host

Looks up the Pyro
object by its name,

neuralserver

114 CHAPTER 5 Learning models

should implement some sort of timeout. The duration of that timeout should be based
on your expectation of the normal runtime of the model-learning algorithm. In the
example in listing 5.35, I’ve arbitrarily chosen one hour. With a timeout in place, you
can detect whether the model-learning process has taken too long and should be
treated as a failure.

val timeoutDuration = 60 * 60 * 1000

def timedOut = Future {
Thread.sleep(timeoutDuration)
false

}

def callServer(remoteServer: PyroProxy, jobConfiguration:

➥ JobConfiguration) = {
Future.firstCompletedOf(

List(
timedOut,
Future {

remoteServer.call("generate",
jobConfiguration.contentPath,
jobConfiguration.stylePath,
jobConfiguration.modelPath,
jobConfiguration.modelType.toString,
jobConfiguration.width,
jobConfiguration.alpha,
jobConfiguration.beta,
jobConfiguration.iterations).asInstanceOf[Boolean]

}))
}

Because you’re dealing with a Python program on the other end of this call, you don’t
get any type guarantees about what it’s going to send back, so you’ll need to typecast the
return value to a Boolean. Because the model-learning process is going to occur in an
entirely separate process, this Scala program will only ever know if that Python program
sends back a true value to say that it’s been successful. Given that limited knowledge,
this timeout mechanism prevents your Scala application from waiting forever in the
event that something has gone wrong with the model-learning process.

 Finally, you can call this function:

val result = callServer(remoteServer, jobConfiguration)

The value in result is a Future of a Boolean, so you can then integrate the value of
the future when it’s completed, with the rest of your reactive Scala application. All the
details of how the Python implementation works are abstracted down to a small inter-
face. The Scala pipeline code understands what valid job configurations are and how

Listing 5.35 Using a timeout

Sets up a one-hour timeout
in milliseconds

Creates a timeout future

Returns a false value to indicate
failure to complete in time

Creates a function
to wrap calling of
the Python server

application

Sets a timeout as the first
future completed of the two

The timeout future

Sets up a
future to call

the method on
the Pyro object

Casts the resulting
value to a Boolean

Invokes the server-
calling function with a
sample configuration

115Summary

long they should take. Should any errors occur in the execution of the TensorFlow
implementation of the style-net algorithm, the Scala application will detect them
using a timeout and react accordingly. Those errors in the model-learning process will
be fully contained with an entirely separate process. Any errors in the Python applica-
tion can’t propagate back to the facade or any of its consumers.

5.4 Reactivities
 Implement a model-learning algorithm. Machine learning textbooks often have

detailed descriptions of various learning algorithms that you can use, in either
pseudocode or some other language. For example, many decision-tree-based
algorithms can be quite simple to implement. Once you have a rudimentary
implementation in place, you can start to think about how reactive your imple-
mentation is or could be. Will your learning algorithm always complete within a
given time? If not, how could you change that?

 Dive deeper into building facades. You built a simple facade for a machine learning
algorithm in this chapter. In particular, you used a Python model-learning algo-
rithm from an otherwise Scala codebase. That’s a pretty common real-world sce-
nario. Lots of development on machine learning technologies occurs using
Python. One of the most powerful technologies you can use for building
machine learning models is TensorFlow, from Google. Although large portions
of it are written in C++, the primary user API is written in Python.

Because TensorFlow is so popular, many people have attempted to imple-
ment different ways of calling it from Scala. Examine one of the several libraries
that allow you to access TensorFlow from Scala. Some of these may be focused
on Spark specifically. Notable examples include TensorFlowOnSpark from
Yahoo!, TensorFrames from Databricks, and MLeap. When you look into these
implementations, ask yourself what guarantees hold about the behavior of the
model-learning implementation. How does the use of multilanguage runtimes
change what you can say confidently about the behavior of a model-learning
pipeline written using one of these tools? Can you write a test that proves some-
thing about the library’s response to errors or high load?

If you’re interested in learning more about TensorFlow specifically, check out Machine
Learning with TensorFlow by Nishant Shukla (Manning, 2018) for a much deeper look
into that technology (www.manning.com/books/machine-learning-with-tensorflow).

Summary
 A model is a program that can make predictions about the future.
 Model learning consists of processing features and returning a model.
 Model learning must be implemented with an expectation of failure modes (for

example, timeouts).

116 CHAPTER 5 Learning models

 Containment, using the facade pattern, is a crucial technique for integrating
third-party code.

 Contained code wrapped in a facade can be integrated with the rest of your
data pipeline using standard reactive-programming techniques.

In the next chapter, we’ll take the models you’ve learned and analyze their perfor-
mance so you can decide whether to use them.

117

Evaluating models

We’re over halfway done with our exploration of the phases of a machine learning sys-
tem (figure 6.1). In this chapter, we’ll consider how to evaluate models. In the context
of a machine learning system, to eval-
uate a model means to consider its
performance before making it avail-
able for use in predictions. In this
chapter, we’re going to ask a lot of
questions about models.

 Much of the work of evaluating
models may not sound that neces-
sary. If you’re in a hurry to build a
prototype system, you might try to
get by with something quite crude.
But there’s real value in understand-
ing the output of the upstream

This chapter covers
 Calculating model metrics

 Training versus testing data

 Recording model metrics as messages

Figure 6.1 Phases of machine learning

118 CHAPTER 6 Evaluating models

components of your machine learning system before you use that output. The data in a
machine learning system is intrinsically and pervasively uncertain.

 When you contemplate whether you want to use a model to make predictions, you
face that uncertainty head on. There are no answers to look up from somewhere else.
You need to implement the components of your system such that they make the right
decisions—or suffer the consequences.

 Using machine-learned models can be high-stakes stuff. Machine learning systems
are used to handle decisions of real consequence where failure could mean real losses
to their users. We’re going to consider just such a problem, one with some very con-
crete financial consequences for success or failure: fraud detection.

6.1 Detecting fraud
Kangaroo Kapital is the largest credit card company in Australia. Animals across the
continent use Kangaroo Kapital credit cards to make all their daily purchases, racking
up points in the company’s reward system. Because Australian animals have tradition-
ally not worn much clothing, the challenges of carrying around cash are substantial.
Only having to keep track of a single credit card is a big help for your average work-
ing wallaby; nevertheless, Australian animals have problems keeping track of even a
single credit card. Cards are often misplaced, leading to a problem with theft and
fraudulent use.

 The fraud team at Kangaroo Kapital is charged with detecting these cases of fraud.
They use sophisticated analytical techniques to try to determine when a customer’s
card has been stolen. If they can determine with sufficient confidence that a card has
been stolen, they lock down the card and contact the customer. The benefits of being
fast and correct are substantial. In the best-case scenario, the fraud team’s systems
detect fraud the first time a card is misused, lock down the card, and then suffer no
further losses (figure 6.2).

 But if the system is too slow, the company eats the cost of those fraudulent transac-
tions, not the customer. That can get expensive, because no one loves to spend quite
like a duck-billed platypus with a stolen credit card (figure 6.3).

 Being too eager can also be bad for the company. If the team is wrong, then they’ve
locked down a card that a customer is attempting to use, greatly inconveniencing them.

Figure 6.2 Successful fraud detection

119Holding out data

A Tasmanian devil who can’t pay his dinner bill due to a declined credit card is one
unhappy customer. He’s likely to cancel his credit card, which would also lead to lost
money for the company (figure 6.4).

This trade-off is often discussed in machine learning contexts using various metrics
that can be calculated for a given model. Much of this chapter focuses on different
model metrics, because metrics are a key part of how real-world machine learning sys-
tems are operated.

6.2 Holding out data
To understand model metrics for evaluating your models, you need to start by using
some data that’s different than you’ve ever used before. In previous chapters, you saw
how to collect and use data to train a machine learning model. But you typically don’t
use all the data you’ve collected just for training the model. Instead, you usually leave
some data aside for other purposes. That data is called hold-out data, meaning it wasn’t
included in the data used to learn the model. Depending on what you’re trying to do
with your machine learning system, you might do several different things with that
held-out data, but usually you’ll need it for something.

 There are big dangers in deciding which data to hold out and which data to use
to learn your model. If you’re not careful about how you handle your data at the
system level, you may find that your models will do terrible things when used to make
live predictions in your production system. The ’roos at Kangaroo Kapital are a

Figure 6.3 Failing to detect fraud

Figure 6.4 Inaccurately detecting fraud

120 CHAPTER 6 Evaluating models

pretty conservative bunch, so they’ve tried to safely use hold-out data as much as
possible. Their approach relies on a global concept of what is hold-out data and
what is training data.

 To understand the Kangaroo Kapital implementation, let’s first set up a basic ver-
sion of the domain model for the credit card–processing systems. The following list-
ing shows some of the basics you’ll need to build code that could handle credit card
transactions.

type TransactionId = Long
type CustomerId = Long
type MerchantId = Long

case class Transaction(transactionId: TransactionId,
customerId: CustomerId,
merchantId: MerchantId,
dateTime: DateTime,
amount: BigDecimal)

Using the basic domain model established in listing 6.1, you can now implement your
version of the code to split out training data from hold-out data. The implementation
applies a deterministic hashing function, based on a stable identifier (the customer’s
account number). All transactions for a given customer are always in either the train-
ing data or the held-out data. In less data-rich systems, that may not be the right
approach. An alternative would be to split transactions between training data and
held-out data. But Kangaroo Kapital has enormous market share in Australia, so split-
ting by customers is an acceptable choice for them.

 The next listing shows how a given transaction is assigned to either the training
data or the held-out data.

Listing 6.1 Credit card transactions utils

Type alias for a
transaction identifier Type alias for a

customer identifier

Type alias for a merchant identifier

Case class for
a transaction

Type aliases
The identifiers of transactions, customers, and merchants are typed using type
aliases. We haven’t used them before, but type aliases are simple utilities. They allow
you to define arbitrary numeric identifiers using meaningful names for their types,
without changing any of the underlying properties of the base type. A CustomerId is
just a Long. You can perform all the same operations on a CustomerId that you can
on a Long. But you can implement your code to describe when a given Long is in fact
the identifier for a customer versus the identifier for a merchant. Being able to assign
these descriptive types is often helpful for building up richer descriptions of the prob-
lem domain using types, as shown in listing 6.1.

121Holding out data

val TrainingPercent = 80

def trainingCustomer(id: CustomerId): Boolean =
val hashValue = id.hashCode() % 100
hashValue < TrainingPercent

}

val sampleTransaction = Transaction(123, 456, 789,

➥ DateTime.now(), 42.01)

val datasetResult = trainingCustomer(sampleTransaction.customerId)

println(s"Is the sample transaction in the training set?

➥ $datasetResult")

The trainingCustomer function could be implemented in several different places. At
the moment, you’re concerned with transactions, so you could implement it on the
Transaction class. Because it’s information about a customer, you could put it on the
Customer class that presumably exists somewhere (but that you haven’t imple-
mented). But trainingCustomer is a pure function that could be widely used across
the system.

 The type signature ensures that it will only ever operate on customer IDs, as you
intend, so let’s leave it on a utility object and allow consumers to import it as needed.
If you have experience with object-oriented programming, that might strike you as
bad style. But Scala unites both the object-oriented and functional programming par-
adigms, so this is entirely acceptable in Scala. In functional programming–style code,
it’s not uncommon to have “bags of functions,” where an object may be a container
for some functions that might all be used independently of each other. The object
merely serves as a namespace—an identifier used for organizing code. This is in con-
trast to traditional object-oriented programming, which creates objects that are
strongly cohesive units meant to be used as a whole.

 Because your hashing function holds to certain properties, there’s no harm in allow-
ing the function to be passed around throughout your codebase. It’s clearly pure, mean-
ing it causes no side effects. The function is also referentially transparent, meaning it will
always return the same value when called with the same argument. That’s an important
property of mathematical functions that your functions must hold to. When you can
structure your code as pure, referentially transparent functions, that can make code
reuse quite easy and natural, as you can see with your hashing function.

 Note that your hashing function is implemented in such a way as to randomly assign
instances to training or testing according to the proportions set by the training-propor-
tion parameter. This strategy for splitting up the training and testing datasets avoids var-
ious common data-preparation problems that can result in poorly performing models.

Listing 6.2 Assigning customers to the training set

Percentage of customers
to assign to training sets

Function to determine
whether a customer
should be used in a

training set
Uses the modulo 100
value of a hash value
of a customer ID to
produce a hash value

Compares the hash value for a
customer with a constant percent

Sample transaction to use for testing

Resulting dataset
for the sample

transactionPrints the results for inspection

122 CHAPTER 6 Evaluating models

6.3 Model metrics
Now that you have the ability to divide up the data, you can use some of it to train your
model and the rest to test or evaluate any learned models. You’ve already seen how
models can be trained in chapter 5. Listing 6.3 recaps that model-learning process,
again using Spark’s MLlib. You’ll start without using much new functionality from
MLlib. Instead, you’ll focus on how the model-learning process from chapter 5 con-
nects to the work at hand. In this example, you’ll learn a binary classification model
using logistic regression.

val session = SparkSession.builder.appName("Fraud Model").getOrCreate()
import session.implicits._

val data = session.read.format("libsvm")

➥ .load("src/main/resources/sample_libsvm_data.txt")

val Array(trainingData, testingData) = data.randomSplit(Array(0.8, 0.2))

val learningAlgo = new LogisticRegression()

val model = learningAlgo.fit(trainingData)

println(s"Model coefficients: ${model.coefficients}

➥ Model intercept: ${model.intercept}")

In this case, you’ll use some standard sample data to stand in for the Kangaroo Kapital
credit card data. You can refactor this code later to ingest from your statically typed
transactional data. With this sample data, you can get the basics of your training and
testing process set up quickly. Note that you’re also using a less sophisticated method

Listing 6.3 Learning a model

Logistic regression
Although you haven’t seen it before in this book, logistic regression is a common model-
learning algorithm. It’s a regression model used to predict categorical variables (for
example, fraudulent versus nonfraudulent credit card charges). A deeper discussion
of the details of the algorithm is beyond the scope of this book, but as usual, Wikipedia
has a good introduction (https://en.wikipedia.org/wiki/Logistic_regression).

When it comes to building machine learning systems, logistic regression has several
advantages: it’s widely implemented, there are efficient distributed implementations,
the model size scales linearly with the number of features, the importance of features
on the model is easily analyzable, and so on. In this case, using logistic regression allows
you to use even more library functionality from MLlib to evaluate your learned model
than is available for less popular or more sophisticated model-learning algorithms.

Creates a new session

Imports some useful implicit
conversions for use with DataFrames

Loads some sample data,
stored in LIBSVM format

Randomly splits
sample data into

training and
testing sets

Instantiates a
new instance of a
logistic-regression
classifier

Learns a model over a training set
Prints the parameters of
the model for inspection

123Model metrics

of splitting the data between training and testing than you did before. Again, this is
just to give you a simple but runnable prototype that you can refactor to use the credit
card data later. Both the sample data and the random train/test splitting function are
provided by the Spark project to make it easier to get started building models.

 At the end of listing 6.3, you produced an instance of a LogisticRegression-
Model. You can now use some library functionality to inspect and reason about your
model. At this point in the process, you have absolutely no idea what your model is
like. The outcome of the model-learning process is by definition uncertain—you
could have a very useful model or complete garbage.

 First, we can understand some of the metrics that can be computed about the
model’s performance on the training set, but to do that, we need to cover how to
measure the performance of a classifier. Reviewing a bit from chapter 5, in binary
classification problems, we often refer to the two classes as positive and negative. In the
case of Kangaroo Kapital, the positive case would be that fraud had occurred, and the
negative case would be that no fraud had occurred. A given classifier can then be
scored on its performance within those classes. This is true whether the classifier is a
machine-learned model, a dingo making decisions based on smell, or just a flip of an
Australian one-dollar coin. Conventional terminology calls correct predictions true
and incorrect predictions false. Putting all this together yields the two-by-two matrix
shown in figure 6.5, known as a confusion matrix.

 A true positive is when the model predicts a fraud correctly. A false positive is when
the model predicts a fraud incor-
rectly. A true negative is when the
model predicts a normal (not fraudu-
lent) transaction correctly. Finally, a
false negative is when the model incor-
rectly predicts a normal transaction,
when there was in fact fraud.

 With these four statistics, we can
calculate a number of statistics to help
us evaluate models. First, we can eval-
uate the precision of a model, which is
defined as the number of true posi-
tives divided by the sum of all positive
predictions:

precision = true positives / (true positives + false positives)

Precision is important for the Kangaroo Kapital team. If their fraud model’s precision
isn’t high enough, they’ll spend all their fraud investigation budget investigating nor-
mal, nonfraudulent transactions.

 There’s another statistic, called recall, that’s also important for the kangaroos. If
the kangaroos’ fraud model’s recall isn’t high enough, it will be too easy for animals to
commit credit card fraud and never get caught, and that will get expensive.

Figure 6.5 Confusion matrix

124 CHAPTER 6 Evaluating models

 Recall is defined as the number of true positives divided by the sum of all positives
in the set:

recall = true positives / (true positives + false negatives)

Depending on the context, recall also goes by other names, such as the true positive
rate. There’s another statistic related to recall called the false positive rate, or drop-out,
which is defined as the number of false positives divided by the sum of all negatives in
the set:

false positive rate = false positives / (true negatives + false positives)

You can visualize how a model trades off the true-positive rate (recall) versus the false
positive rate using a plot called an ROC curve.

NOTE ROC stands for receiver-operating characteristic. The technique and the
name originated in work on radar during World War II. Although the tech-
nique is still useful, the name has no relationship to
its current common usage, so it’s rarely referred to
by anything other than its acronym, ROC.

A typical ROC curve plot might look something like
figure 6.6.

 The false positive rate is on the x-axis, and the true
positive rate is on the y-axis. The diagonal line x = y rep-
resents the expected performance of a random model,
so a usable model’s curve should be above that line.
MLlib has some nice, built-in functionality to calculate
the ROC curve for a binary classifier.

val trainingSummary = model.summary

val binarySummary = trainingSummary.asInstanceOf

➥ [BinaryLogisticRegressionSummary]

val roc = binarySummary.roc

roc.show()

The model summary is relatively new functionality in MLlib, so it’s not available for all
classes of models. There are also limitations to its implementation, such as the one
that requires you to use asInstanceOf to cast the summary to the correct type. Make
no mistake, using asInstanceOf like this is bad Scala style; it represents a subversion
of the type system. But MLlib is still being rapidly developed, so this cast operation is

Listing 6.4 Training-performance summary

Produces a summary of a
model’s performance

Casts that summary
to an appropriate type,
BinaryLogisticRegressionSummary

ROC curve for the model

Prints the ROC curve
for inspection

Figure 6.6 ROC curve

125Model metrics

just a sign of an incomplete implementation within MLlib. Development on MLlib is
very active, but machine learning is an enormous domain for any one library to sup-
port. New functionality is being added at a rapid pace, and the overarching abstrac-
tions are being dramatically improved. Look for rough edges like this class cast to
disappear in future versions of Spark.

 We’re building massively scalable machine learning systems that operate largely
autonomously, so who has time to look at a graph and make a decision about what
constitutes a good-enough model? Well, one of the uses of an ROC curve is to get a
single number about the performance of a model: the area under the ROC curve.
The higher this number, the better the model’s performance. You can even make
strong assertions about a model’s utility using this calculation. Remember, a random
model would be expected to perform according to the line x = y on the ROC curve.
The area under that is 0.5, so any model with an area under the curve (AUC) of less
than 0.5 can safely be discarded as being worse than a random model.

 Figures 6.7, 6.8, and 6.9 show the differences in the area under the curve of a
good, random, and worse-than-random model.

The next listing shows the implementation of validating for performance better than
random.

def betterThanRandom(model: LogisticRegressionModel) = {
val trainingSummary = model.summary

val binarySummary = trainingSummary.asInstanceOf

➥ [BinaryLogisticRegressionSummary]

val auc = binarySummary.areaUnderROC

auc > 0.5
}

betterThanRandom(model)

Listing 6.5 Validating training performance

Figure 6.7 Good model Figure 6.8 Random model Figure 6.9 Bad model

Defines a function to
validate that a model is
better than random

Training summary

Class casting

Area under the ROC curve

Tests whether the area under the curve
is greater than the random model

Example call to validate a model

126 CHAPTER 6 Evaluating models

This validation can serve as a useful safety feature in a machine learning system, pre-
venting you from publishing a model that could be deeply detrimental. In the Kanga-
roo Kapital example, because fraud is so much rarer than normal transactions, a
model that failed this test would very likely be falsely accusing a lot of angry animals of
credit card fraud.

 This technique can be extended beyond basic sanity checks like this. If you record
the historical performance of your published models, you can compare the perfor-
mance of your newly trained models to them. Then a logical validation would be to
not publish a model with meaningfully different performance than the current pub-
lished model. I’ll discuss some more techniques for model validation a bit later.

 You’re not done asking questions about your model yet. You can consider other
model metrics. The metrics you’ve seen so far try to capture an aspect of a model’s
performance. In particular, it’s not hard to imagine a model that does a bit better on
precision but not on recall or vice versa. An F measure (or sometimes F1 score) is a statis-
tic that tries to combine the concerns of precision and recall in the same metric. Spe-
cifically, it’s the harmonic mean of the precision and the recall. The next listing shows
two ways of formulating the F measure.

F measure = 2 * (precision * recall) / (precision + recall)

F measure = (2 * true positives) /

➥ (2 * true positives + false positives + false negatives)

Using the F measure as a model metric may not always be appropriate. It trades off
precision versus recall evenly, which may not correspond to the modeling and busi-
ness objectives of the situation. But it does have the advantage of being a single num-
ber that can be used to implement automated decision making.

 For example, one use of the F measure is to set the threshold that a logistic-regression
model uses for binary classification. Internally, a logistic-regression model is producing
probabilities. To turn them into predicted class labels, you need to set a threshold to
divide positive (fraud) predictions from negative (not fraud) predictions. Figure 6.10
shows some example prediction values from a logistic-regression model and how they
could be divided into positive and negative predictions using different threshold values.

Listing 6.6 F measure

Figure 6.10 Threshold setting

127Testing models

The F measure isn’t the only way of setting a threshold, but it’s a useful one, so let’s
see how to do it. The following listing shows how to set a threshold using the F mea-
sure of the model on the training set.

val fMeasure = binarySummary.fMeasureByThreshold

val maxFMeasure = fMeasure.select(max("F-Measure"))

➥ .head().getDouble(0)

val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure)
.select("threshold").head().getDouble(0)

model.setThreshold(bestThreshold)

Now the learned model will use the threshold selected on the basis of the F measure
to distinguish between positive and negative predictions.

6.4 Testing models
Back in listing 6.3, as part of preparing your data for learning, you set aside some of
the data for the testing process. Now it’s time to use that hold-out data to test your
model. When we test models, our goal is to get an accurate picture of the model’s per-
formance in the wild. To do that, we must use data that the model has never seen
before: our hold-out data.

 You can use the existing model that you’ve already learned and set a threshold to
make predictions on the hold-out data. The next listing shows how to produce predic-
tions and inspect them.

val predictions = model.transform(testingData)

predictions.show(5)

Next, you’ll do something similar to what you did before: calculate some metrics
about the model’s performance. In this case, let’s look at precision and recall again.
To recap: a model with low precision resulted in a lot of angry Tasmanian devils who
got their cards declined for totally normal, nonfraudulent usage. A model with low
recall will result in a lot of happy platypi swimming away with all of Kangaroo Kapi-
tal’s money, because their fraud went undetected. Both are important, so we want a
model that trades off both concerns well. To visualize how a model does with respect
to precision and recall, we can look at another plot: the precision-recall curve, shown
in figure 6.11.

Listing 6.7 Setting a threshold using the F measure

Listing 6.8 Predicting on hold-out data

Retrieves the F measure for
every possible threshold

Finds the maximum F measure

Finds the threshold
corresponding to the
maximum F measure

Sets that threshold on the model

Predicts over each row
in a testing dataset

Prints a few predictions
for inspection

128 CHAPTER 6 Evaluating models

Compared to the ROC curve we looked at before, the only difference is the metrics on
the axes. Recall is on the x-axis, and precision is on the y-axis. Again, the diagonal line
x = y represents the expected performance of a random model, so a usable model’s
curve should be above that line.

 As before, you want to be sure that the learned model is better than a random
model for your chosen model metrics, so you’ll calculate the area under the precision-
recall curve.

val evaluator = new BinaryClassificationEvaluator()
.setLabelCol("label")
.setRawPredictionCol("rawPrediction")
.setMetricName("areaUnderPR")

val areaUnderPR = evaluator.evaluate(predictions)

The area under the precision-recall curve for a random model is 0.5, the same as a
random model in an ROC curve, so you can define your validation function in the
same way.

def betterThanRandom(area: Double) = {
area > 0.5

}

From the perspective of the code you had to write, the metrics on the hold-out data
worked pretty much identically to calculating metrics on the training data. But it’s
important to note that metrics calculated on training data give you a very different
sort of picture than metrics calculated on hold-out data. The metrics you calculated
on the training set represent the best possible performance of the model. During the

Listing 6.9 Using an evaluator

Listing 6.10 Validating the model

Figure 6.11 Precision-recall curve

Instantiates a new evaluatorSets a column
containing a

class label

Sets a column
containing predictionsSets a metric to

be calculated,
the area under
the precision-

recall curve

Executes the
evaluator

Defines a function to
check the area under the
precision-recall curveEnsures that the area

under the curve is greater
than the random model

129Data leakage

training process, the model-learning algorithm had access to both the features and
the class labels. Depending on the model-learning algorithm and the training dataset,
it’s possible for a model to have 100% accuracy on a training dataset.

 The hold-out data gives you a very different and more realistic view of how good
your model is. Because the model has never seen any of this data, it should behave
much the same as it would if you published it and used it in the real world. You can
think of this as early access to the model’s true performance, much like the Manning
Early Access Program (www.manning.com/meap-program), which gives readers
access to books like this one before they’re actually printed on paper.

 This early access to a model’s performance is crucial. It allows you to protect your
production systems from fundamentally broken models that could wreak havoc with
your overall system. It’s important that you don’t corrupt the integrity of the testing
process. If you fail to adequately separate the data you use for training and testing pro-
cesses, you can get a fundamentally inaccurate picture of your model’s performance.
Otherwise, you can end up with the problem discussed in the next section.

6.5 Data leakage
A common data-handling error is called data leakage. It works something like this.
You’ve separated your data for use in training and testing, but there’s a subtle prob-
lem. Knowledge about what’s in the hold-out data—in particular, the class labels—has
leaked into the training data somehow. The result will be good performance on the
training and testing data but potentially very bad performance on real-world data.

 In the case of Kangaroo Kapital, consider a data scientist building a model on the
transactions of long-term customers, for detecting fraud. Because the scientist has a
lot of historical data on these customers, he decides to build a feature about the his-
tory of fraud for a certain user. The rationale is that past incidences of fraud on a cus-
tomer’s account imply that she might not be very good at keeping her card in her
pouch. The data scientist writes a feature to query the historical number of fraud
reports for a customer, which looks something like the stub implementation in the fol-
lowing listing.

def pastFraudReports(customer: Customer): Int = ???

The problem is that in the data scientist’s implementation, he has no date-range restric-
tion on his query. The backing database that stores the fraud-report data that he’s que-
rying employs a mutable data model. The result is that recently reported frauds are
included in this feature, so the model can see those frauds and bias itself toward fraud
in the training process. This approach continues to work just fine in the test set, where
that feature about “past” frauds continues to do a good job of predicting where “future”
frauds will occur. All the model metrics we’ve looked at will appear to indicate that this
is a highly performant model—but they’ll be wrong. Once the model is published, its

Listing 6.11 Past-fraud-reports feature

130 CHAPTER 6 Evaluating models

performance will be much lower than any previously calculated metrics would have
implied. That’s because the model can no longer see the future data in the feature, so
it can no longer rely on that feature to artificially inflate its performance.

 Data leakage can also take even more subtle forms than that. Remember, Kanga-
roo Kapital separates customers into either training or testing customers. That’s a gen-
erally sound strategy, but it’s not necessarily all that’s needed to ensure that data is
handled properly.

 There was an incident a while ago involving a ring of koala fraudsters. They slowly
accumulated the account credentials of many of Kangaroo Kapital’s customers. Then,
all at once, they rang up a huge amount of charges, costing the company millions.
That’s a lot of eucalyptus!

 The problem with working with this historical dataset is that it happened at a par-
ticular point in time, for a particular subset of users. For some reason, the koala fraud-
sters targeted dingoes primarily. When the data is separated between training and
testing usage by customer, plenty of dingoes are going to wind up in the training set,
and it’s probable that the model will learn that accounts held by dingoes are likely to
be targeted for fraud. The problem is that this knowledge is useless for the future. It
was a single incident, at a single point in time. All the perpetrators have since been
locked up (after a low-speed police chase). This knowledge is useless, and a dingo-cen-
tric model will now perform quite poorly in the wild.

 In cases of large events in the underlying dataset like this, you can use various tech-
niques to mitigate the impact of this anomalous data. One approach is to divide your
data by time, using the earlier data for training, while holding out the later data. This
approach may result in quite poor performance during the testing phase, but that will
be accurate. Machine learning models have a hard time predicting the unpredictable.

 Or you can discard this time period entirely on the grounds that you’re trying to
build a model for the concept label of “normal-scale fraud,” which would typically be
more evenly distributed across various species of customers. That doesn’t have to
mean ignoring such forms of fraud entirely. You can still implement other types of
models or even deterministic systems (for example, rate limits) to detect major fraud
events like this. This approach lets your “normal-scale fraud” focus on the small and
regular incidents of fraud that you were originally focusing on anyway.

 Regardless of the approaches you take, you’ll always want to make sure that any rel-
evant knowledge from the hold-out data is kept entirely out of the training data. If you
can succeed at that, your model-evaluation process should be accurate and useful.

6.6 Recording provenance
Now that you’ve asked all sorts of questions about your models to ensure that they’re
predictive, you need to put those models to use. In chapter 7, we’ll focus on the pro-
cess of publishing models, making them available for use in predictions. But before
we do that, let’s take a quick look at how to capture all the useful information that we
considered in this chapter.

131Recording provenance

 If you look back at chapter 4, section 4.5, you can see that you needed to make
decisions about which feature data could be used based on contextual information
that couldn’t necessarily be established within source code and verified at compile
time. We have a similar problem with models. Due to the intrinsic uncertainty of the
model-learning process, we don’t know how good our model is going to turn out to be
until after we’ve learned it and evaluated its results.

 This chapter has shown several techniques for addressing this uncertainty through
using statistical techniques to evaluate the performance of models. The results of those
calculations need to be consumed by something, though. In this book, we’ll consider
two downstream consumers of the data produced during model evaluation: the pub-
lishing process and the supervisory component of the prediction-serving application.

 The information that these other systems need to consider is a form of provenance
(also known as lineage). In this context, the provenance of a model is the information
about how the model was produced, including things like the performance metrics
used to determine that a model should be published.

 One way to pass around this information is to attach the calculated metrics to the
model itself inside a wrapper object of some kind. The next listing shows one way to
do this for some of the statistics you’ve calculated in this chapter.

case class Results(model: LogisticRegressionModel,
evaluatedTime: DateTime,
areaUnderTrainingROC: Double,
areaUnderTestingPR: Double)

These may not be precisely the metrics you want to record for your particular model-
learning pipeline. Area under the curve is useful for deciding if we want to use a
model, but downstream systems may be more concerned with how that model will
behave. You might want to record the precision and recall on the testing set at the
chosen threshold.

 Additionally, you may not be passing around the model object with its metadata.
Sometimes you may choose to only refer to a model by a unique identifier and store
the metadata in a different place than the model, such as in a database. The next list-
ing shows an alternative way of modeling your evaluation results.

case class ResultsAlternate(modelId: Long,
evaluatedTime: DateTime,
precision: Double,
recall: Double)

Listing 6.12 Evaluation-results case class

Listing 6.13 Refactored evaluation-results case class

The model itself Time at which the
model was evaluated

Area under the ROC
curve on the training set

Area under the precision-recall
curve on the testing set

Model identifier Time at which the
model was evaluated

Precision of the model
on the testing set

Recall of the model
on the testing set

132 CHAPTER 6 Evaluating models

This alternative approach is a bit closer to the message-oriented ideal preferred in a
reactive machine learning system. This case class could easily be transmitted as a mes-
sage via any number of technologies: queue, event bus, database, and so forth. There’s
no need for any of the downstream systems needing to consume this data to be cou-
pled any more tightly than simple message-passing. From the perspective of any con-
sumers (receivers of ResultsAlternate messages), the model could have been
learned by any library, in any language.

 If our model-evaluation process turned up that we had learned a useless model, we
could send that information as a message about a model with low precision and/or
recall. This message-passing form of communication keeps the failure of our model-
learning process nicely contained. As you’ll see in the next chapter, we can build
model-publishing systems that can act on messages about models and do the right
thing to maintain reactivity in our machine learning systems.

6.7 Reactivities
 Calculate a different performance statistic for the performance of a given model on a dataset.

Believe it or not, there are more performance statistics that you can calculate. You
can try calculating the positive and negative likelihood ratios, the G-measure, or
something else. You’ll find descriptions of different statistics in various statistics
references, in books and online. Then you can compare those values to the results
of the other calculations we’ve explored in this chapter. What intuitions does this
give you about the performance of the model?

 Try to build a “perfect” model on the training set. This one is easier than it sounds.
With a little work, many techniques can get perfect or near-perfect perfor-
mance for a given dataset. Generally speaking, if your model has the same num-
ber or more of parameters as it does training instances, it can be possible for
each parameter to end up effectively being a representation of a given instance.
If you give every instance in your dataset an arbitrary identifier as a feature,
then several model-learning techniques can use this single feature as a way of
“remembering” which instance has which class label. If you get a model that’s
been trained in this way, the interesting thing to do with it is to test it. Apply the
model to your test set, and calculate its performance. Because you’ve engi-
neered an overfit model, the performance is likely (but not guaranteed) to be
pretty terrible. How does your model perform on the test set? If its perfor-
mance isn’t too bad, how else could you detect that it might not do well on
future unseen data?

Summary
 Models can be evaluated over hold-out data to assess their performance.
 Statistics like accuracy, precision, recall, F-measure, and area under the curve

can quantify model performance.

133Summary

 Failing to separate data used in training from testing can result in models that
lack predictive capability.

 Recording the provenance of models allows you to pass messages to other sys-
tems about their performance.

In the next chapter, you’ll see how to make your learned models available for use in
predictions.

135

Publishing models

In this chapter, we’ll consider how to publish models (see figure 7.1). Throughout
this book, you’ve been learning and using models, but making models available for
use in a real machine learning sys-
tem can involve some complexities
that you haven’t yet seen. When
you’re exploring models in a REPL
like the Spark shell, you can directly
call methods on the instance of a
model already in memory. But in
real-world systems, it’s common for
a model to be learned in a pipeline,
as you saw in chapters 4 and 5,
before being used in a completely
different application. This chapter
will show you how to make models

This chapter covers
 Persisting learned models

 Modeling microservices using Akka HTTP

 Containerization of services using Docker

Figure 7.1 Phases of machine learning

136 CHAPTER 7 Publishing models

available for use in the complex environment of a real-world machine learning system.
We’ll work through an approach to packaging models into services and then making
those services into independently deployable units.

7.1 The uncertainty of farming
Machine learning is used in all sorts of industries, not just ones that you think of as
having a lot of technology involved. The world of farming, for example, requires a
great deal of technological sophistication. Consider Hareloom Farms, an organic
farm, run entirely by rabbits. The rabbits grow fruits and vegetables, including celery,
tomatoes, and, of course, carrots.

 The business of farming is fraught with uncertainty. At Hareloom, an early freeze
could destroy their tomatoes. Producing less kale than there is demand for could
mean missing out on potential revenue. A sudden drop in the price of turnips could
leave them with a crop that’s barely worth
harvesting.

 For all these reasons, Hareloom Farms
needs predictive capabilities to run their
mostly nontechnology business. They have
a data team consisting of data scientists
and engineers (including you) who are
smarter than the average hare. You build
machine-learned models for all these prob-
lems using tools that you’ve seen before:
Scala, Spark, and MLlib. Let’s see what you
cooked up down on the farm.

7.2 Persisting models
The farmers at Hareloom are very concerned with their crop yields—the amount of
crops produced per unit of farmland. Lately, they’ve been trying to model the prob-
lem of how much carrot seed to use during planting. Carrot seed itself is a pretty low-
cost ingredient for their operation, so they historically used it pretty freely. When they
used too little carrot seed, they didn’t produce as many carrots as they’d like. But
when they used too much, they saw issues with crowding, leading to unsatisfactorily
small carrots.

 Your team recorded all of this historical data in the form of simple instances for
training. For your single feature, you chose the number of seeds per inch of soil
planted. For your concept label, you chose to use a single Boolean value to indicate
whether that particular harvest was considered a success. This success label is manu-
ally produced by aggregating subjective judgments around the amount of carrots har-
vested, the size of the carrots, and the difficulty of harvesting them.

 With the modeling task defined, you can start to build up your Spark pipeline.

137Persisting models

val session = SparkSession.builder

➥ .appName("ModelPersistence").getOrCreate()

val data = Seq(
(0, 18.0, 0),
(1, 20.0, 0),
(2, 8.0, 1),
(3, 5.0, 1),
(4, 2.0, 0),
(5, 21.0, 0),
(6, 7.0, 1),
(7, 18.0, 0),
(8, 3.0, 1),
(9, 22.0, 0),
(10, 8.0, 1),
(11, 2.0, 0),
(12, 5.0, 1),
(13, 4.0, 1),
(14, 1.0, 0),
(15, 11.0, 0),
(16, 7.0, 1),
(17, 15.0, 0),
(18, 3.0, 1),
(19, 20.0, 0))

val instances = session.createDataFrame(data)
.toDF("id", "seeds", "label")

The rabbits at Hareloom have more historical data than that, but this sample should
be enough to get you started implementing your model. Note that you’re going to use
the DataFrame-centric Spark ML API again.

 Once you have data loaded, you need to produce features from that data. In this
case, the feature transform you’ll apply is the binning technique from chapter 4, this
time using some MLlib library functionality, to reduce your feature values to three
bins, as shown in the next listing. For more on the technique of binning features, see
section 4.3.

val discretizer = new QuantileDiscretizer()
.setInputCol("seeds")
.setOutputCol("discretized")
.setNumBuckets(3)

val assembler = new VectorAssembler()
.setInputCols(Array("discretized"))
.setOutputCol("features")

Listing 7.1 Loading data

Listing 7.2 Preparing the features

Sets up a SparkSession

Sequence of
instances for
training and

evaluation

Instances consist of an identifier,
seeds used per inch, and a binary
label for the success of the harvest.

Creates a DataFrame
from instances

Names columns in the DataFrame

Sets up a QuantileDiscretizer
for use in feature engineering

Takes as
input the

seed-density
data

Sets an output
column for the
discretized data

Tells the
discretizer to use

three buckets

Sets up a VectorAssembler to
format data for use as features

Sets input columns
to be formattedDefines an output column

138 CHAPTER 7 Publishing models

The QuantileDiscretizer performs the binning (or discretization) operation for you
without requiring predefined boundaries between buckets. Instead, you specify the
number of buckets, and the discretizer infers reasonable buckets by sampling the data.

 Following the discretizer, you also called another bit of helper functionality from
Spark, the VectorAssembler. Its purpose is to add a new column to your DataFrame
containing the feature values wrapped in the necessary Vector type expected by other
parts of the ML pipeline functionality.

 Following that, you can now compose the remainder of your learning pipeline. In
this example, you’ll be using a technique called cross validation to explore multiple
models to determine which performs best. Cross validation is a technique based on
dividing the data into random subsamples so that the results of the model-learning
process can be evaluated on different portions of the data. This process can then be
repeated with different hyperparameters.

 You’ll need to set up an object to hold the parameters that will be used in different
executions of the model-learning process. Then you can choose which parameters
produce the best model, based on the performance of that model. The problem of
finding the most effective parameters for the model-learning process is generally
referred to as hyperparameter optimization. The technique you use in the example code
is known as grid search, for the parameter grid being iterated through. Unlike some
other applications of search that you may have seen, the form of search used here is a
simple exhaustive search, meaning your pipeline will try all the parameters you provide
to it. Although there are more sophisticated approaches to hyperparameter optimiza-
tion that you could implement, the simple exhaustive search of the parameter grid is
conveniently provided by MLlib and is effective for parameter grids of small size.

 The following listing shows how these concepts come together in the remainder of
your pipeline implementation.

val classifier = new LogisticRegression()
.setMaxIter(5)

val pipeline = new Pipeline()
.setStages(Array(discretizer, assembler, classifier))

val paramMaps = new ParamGridBuilder()
.addGrid(classifier.regParam, Array(0.0, 0.1))
.build()

val evaluator = new BinaryClassificationEvaluator()

val crossValidator = new CrossValidator()
.setEstimator(pipeline)

Listing 7.3 Composing the pipeline

Instantiates a classifier to learn
a logistic regression model

Limits the
number of

iterations it
should use during

model learning
Instantiates
a pipeline Sets stages

of the
pipeline

Instantiates a
ParamGridBuilder to
set some parameters

Adds
regularization

parameters

Builds a map of parameters

Sets up a
BinaryClassificationEvaluator

for evaluating learned models

Sets up a
CrossValidator

to evaluate
different models

Sets an Estimator to use:
previously instantiated pipeline

139Persisting models

.setEvaluator(evaluator)

.setNumFolds(2)

.setEstimatorParamMaps(paramMaps)

The preceding example performs cross validation over different models using differ-
ent regularization parameters. Regularization is a technique designed to produce sim-
pler models that are more generally applicable, as shown in the next listing.

val model = crossValidator.fit(instances)

model.save("my-model")

The final save operation in this pipeline relies on new functionality added in Spark 2.0.
It makes saving and reusing models very easy. In previous chapters, you had to define
case classes for the output of your work. These were often structured as pure data and
were often intended to be used as immutable messages. The model-persistence
functionality of Spark does that for you in a single save call.

 To see exactly what it’s doing, poke around the my-model directory you created.
What you’ll find are two types of files. The first is a metadata file in JSON format. You
first saw the JSON format in chapter 3, where you used it as a structure to translate
your Scala case classes into, so that they could be persisted in your Couchbase docu-
ment database. Here, JSON is used to record the metadata about various aspects of
your pipeline. For example, you can open the my-model/bestModel/metadata direc-
tory and find a file like part-00000. It should contain something like the model in the
following listing.

{
"class": "org.apache.spark.ml.PipelineModel",
"timestamp": 1467653845388,
"sparkVersion": "2.0.0-preview",
"uid": "pipeline_6b4fb08e8fb0",
"paramMap": {

"stageUids": ["quantileDiscretizer_d3996173db25",
"vecAssembler_2bdcd79fe1cf",
"logreg_9d559ca7e208"]

}
}

After looking at this metadata, you can examine the my-model/bestModel/stages
directory, where you should find directories corresponding to the identifier for each

Listing 7.4 Learning and saving the model

Listing 7.5 Pipeline metadata

Sets an Evaluator to use;
previously instantiated
BinaryClassificationEvaluator

Sets the number
of folds to use in
cross validation

Uses previously defined
regularization parameters

Learns the model, executing
all steps in the pipelinePersists the learned

model to the directory
named my-model

Type of model
being persisted:
a PipelineModel

When the model was produced

Version of Spark it
was produced with

Unique
identifier

for this
model

Parameters
about the

pipeline Unique identifiers
for each phase in

the pipeline

140 CHAPTER 7 Publishing models

stage, as listed in your metadata file. If you look at the one for the logistic-regression
phase, you should see something like the next listing.

{
"class": "org.apache.spark.ml.classification

➥ .LogisticRegressionModel",
"timestamp": 1467653845650,
"sparkVersion": "2.0.0-preview",
"uid": "logreg_9d559ca7e208",
"paramMap": {

"threshold": 0.5,
"elasticNetParam": 0.0,
"fitIntercept": true,
"tol": 1.0E-6,
"regParam": 0.0,
"maxIter": 5,
"standardization": true,
"featuresCol": "features",
"rawPredictionCol": "rawPrediction",
"predictionCol": "prediction",
"probabilityCol": "probability",
"labelCol": "label"

}
}

Similar files are produced for the other stages of the pipeline.
 The use of a human-readable format like JSON makes exploring this data easier,

but that’s not the primary purpose of these files, which is to allow you to load previ-
ously learned models that have been saved. In fact, these metadata files aren’t the
models. That’s where the other type of files produced comes in.

 The other files use the Parquet format. Apache Parquet started as a joint project
between engineers at Cloudera and Twitter. It’s commonly used in big data projects
that use Hadoop or Spark because it’s an efficient method of serializing data, with
wide support. Data stored in the Parquet format can very easily be used across differ-
ent sorts of data-processing systems. In this case, you use it to store any of the data
around the phases in your modeling pipeline. For a simple logistic-regression model
without many features, like the one you built, the amount of data in a model is pretty
modest, but the efficient compression capabilities of Parquet could be more useful for
larger models requiring the persistence of more parameters.

 The point of all of this was to allow you to load a model after you had persisted it,
as shown in the following listing.

val persistedModel = CrossValidatorModel.load("./my-model")

In this example, that’s all it takes to restore the previously learned model from the files
you inspected. In a full system implementation, this will allow the rabbits at Hareloom

Listing 7.6 Logistic-regression model metadata

Listing 7.7 Loading a persisted model

Type of predictive
model being persisted: a
LogisticRegressionModel

Parameters
about the

model
Threshold of the model

Various columns from
the DataFrame used to
produce the model

141Serving models

Farms to learn a model using a distributed model-learning pipeline running on a cluster
of nodes and then later use that model in a predictive microservice, such as the kind dis-
cussed in the next chapter.

7.3 Serving models
Now that you’ve seen how to persist and load models, let’s look at how you can use mod-
els to make predictions. The component of a machine learning system that you need to
build now is called by various names, such as model server or predictive service, depending
on the design of the component. Typically, model servers are applications that can make
predictions using a model library, a collection of previously learned models. In contrast,
a predictive service only serves predictions for a single model. However it’s designed, the
model-serving component is crucial to having a useful machine learning system. With-
out this component, the rabbits would have no way of using their models to make pre-
dictions on new problems.

 The Hareloom data-science stack has evolved using different technologies and
designs. In the original model server, all the models that had ever been learned were
stored in and served from a single server-side application. That approach had a num-
ber of problems: it was inflexible, changes in the model structure often meant
changes to the model server, and it required that a lot of infrastructure be built
around the management of the library of models.

7.3.1 Microservices

Eventually, the team decides to abandon their old model-serving implementation
when their load becomes too high and predictions can’t be quickly retrieved at peak
scale. In the redesign, they decide to try a different approach using some new tools
and techniques. Instead of having a monolithic server containing all their models,
they choose to create a microservice per model. A microservice is an application that
has very limited responsibilities. At the most extreme end, a microservice might do
only one thing, holding to the single responsibility principle. When it was originally devel-
oped, the single responsibility principle was meant to apply to a small component like
a class or a function. The principle was that a given system component should do only
one thing. When you extend this principle to system design, you can create a service
that does only one thing.

 In the context of machine learning, the one thing you want your microservice to
do is expose the model function. The team likes the simplicity of this “model function
as a service” design because each microservice can focus on the specific needs of a
given type of model, instead of having one application handle all types of models.

 Choosing to break up their library of models into separate microservices has
solved some of their performance problems. If a given predictive service isn’t keeping
up with its load, the team can deploy another instance. The pure functions of the
team’s models are stateless, so you can have many of them running at once without
any need to coordinate among instances. Later, I’ll discuss some of the infrastructural
pieces that may help when working with arrays of services.

142 CHAPTER 7 Publishing models

7.3.2 Akka HTTP

Even given those advantages, the team wants to see if they can come up with a highly
performant implementation of a model microservice. They turn to our old friend
Akka to help construct the wrapping infrastructure around their models. Akka HTTP
is the module in Akka that’s focused on building web services. It’s not a web applica-
tion framework like Play. Instead, it’s more useful for building things like services that
expose APIs over HTTP. It evolved from a previous framework built on top of Akka
with a lot of the same goals, called Spray. Note that some parts of the functionality
you’ll use in this chapter come from the older Spray project. The advantage of using
Akka to build the predictive service is that you can take advantage of the powerful
concurrency capabilities of Akka. Akka’s actor model provides substantial capability
for efficiently using hardware to build performant services. For example, you can use
many more actors to model concurrency in an application than you can use threads.
That means you can serve many prediction requests at the same time, with the Akka
framework doing most of the hard work of handling all the concurrent requests.

 Let’s begin by setting up the schema of what your predictions will look like, in a
case class, as usual. This will also be used to define how your predictions can be serial-
ized as JSON and deserialized back into case classes.

case class Prediction(id: Long, timestamp: Long, value: Double)

trait Protocols extends DefaultJsonProtocol {
implicit val predictionFormat = jsonFormat3(Prediction)

}

Then you can set up the predictive functionality itself. In this example, you’ll use a
dummy model and a simplified representation of features. The string representation
of the features is parsed from the API call and turned into a feature vector imple-
mented as a Map.

def model(features: Map[Char, Double]) = {
val coefficients = ('a' to 'z').zip(1 to 26).toMap
val predictionValue = features.map {

case (identifier, value) =>
coefficients.getOrElse(identifier, 0) * value

}.sum / features.size

Listing 7.8 Predictions data

Listing 7.9 Models and features

Case class for
predictions

Uses JSON formatting
functionality from Spray JSON

Defines an implicit
formatter for the
prediction case class
using the Spray JSON
helper function

Defines a dummy model that operates on features
structured as maps of characters to doubles

Creates a map of
feature identifiers

to “coefficients”
Generates a

prediction value
by operating on

all feature values

Uses a case
statement to bind
names to each
feature identifier
and feature value

Retrieves a
model coefficient

for a feature,
multiplying it by
the feature value

Sums feature values and divides by the number of
features to produce an average prediction value

143Serving models

Prediction(Random.nextLong(), System.currentTimeMillis(),

➥ predictionValue)
}

def parseFeatures(features: String): Map[String, Double] = {
features.parseJson.convertTo[Map[Char, Double]]

}

def predict(features: String): Prediction = {
model(parseFeatures(features))

}

Now you can wrap these functions in a service definition. Using Akka HTTP, the fol-
lowing listing defines an API route named predict that will take serialized string rep-
resentations of features and return the predictions by your model.

trait Service extends Protocols {
implicit val system: ActorSystem
implicit def executor: ExecutionContextExecutor
implicit val materializer: Materializer

val logger: LoggingAdapter

val routes = {
logRequestResult("model-service") {

pathPrefix("predict") {
(get & path(Segment)) {

features: String =>
complete {

ToResponseMarshallable(predict(features))
}

}
}

}
}

}

Finally, the next listing instantiates an instance of that service, starts up logging, and
binds your service with its predict route to a given port on your local machine.

object ModelService extends App with Service {
override implicit val system = ActorSystem()
override implicit val executor = system.dispatcher

Listing 7.10 A service with routes

Listing 7.11 A model service

Instantiates,
returning a
prediction

instance
Defines a function to convert a feature passed

as strings into maps of strings to doubles

Converts the
feature strings,
using a parser
and a converter
from Spray JSON

Defines a
prediction

function

Composes a model and feature
parser to produce predictions

Creates a Service trait that contains
your formatting functionalityRequires an

implicit actor
system for Akka

Requires an implicit
ExecutionContextExecutor

for Akka

Requires an implicit
Materializer for Akka

Requires
a logger

Defines routes
of service Logs each request and

result to a service

Defines the prefix of
your route to be predict

Defines that this path
will receive gets only

Accepts features as
a String of JSON

Defines how
to complete
a request

Calls a prediction function
and turns it into a response

Defines a model service as a runnable App
using the Service trait you defined

Instantiates
an actor

system for
Akka

Instantiates
an executor
for Akka

144 CHAPTER 7 Publishing models

override implicit val materializer = ActorMaterializer()

override val logger = Logging(system, getClass)

Http().bindAndHandle(routes, "0.0.0.0", 9000)
}

This service can now accept requests for predictions on features and return the
model’s predictions, from any program on a network that can produce a well-formed
GET containing the necessary features (for example, a web browser, mobile app, and
so on). That will make it a lot easier for your team at Hareloom to use their predictive
models in other applications, even beyond the ones maintained by the data team. All
they have to do is get this microservice running on a server somewhere.

7.4 Containerizing applications
The JVM ecosystem has an approach to building and distributing runnable applica-
tions. Applications can be built as JARs—archives of code—and then executed any-
where that has a Java runtime. Scala inherited all these capabilities from Java, and they
work just fine.

 But there are other options. Lately, many teams have been packaging and distrib-
uting applications in a way that maximizes portability and works for all types of run-
times, called containers. Containers are a way of virtualizing an entire server such that
the resulting container can be run on top of another OS while still appearing inter-
nally as if it were directly operating on a server, without an intervening host. A con-
tainer can guarantee a complete static snapshot of the state of the system, because all
the necessary resources to run the application being contained are inside the con-
tainer. Containers are an alternative to directly installing an application on a server
within an OS running other programs.

 When using traditional methods of installing applications on servers, all sorts of
aspects of the server state could affect the runtime of the application, such as environ-
ment variables, the installed libraries, networking configurations, and even system
time. When using containers, developers get complete control over what’s inside the
application’s view of the world and prevent the base OS or other running applications
from interfering with proper operation of the application. Similarly, applications are
very tightly limited in the resources they can consume inside a container, so there’s
less chance of a containerized application interfering with another application.

 The Hareloom Farms team chooses to use Docker, a popular implementation of
containers, as their standard method of packaging applications. One reason you
choose Docker specifically is that a wealth of tooling and infrastructure has been built
around Docker, some of which you’ll see in this chapter and some in the next.

 For the latest instructions on how to install Docker, visit the Docker website:
www.docker.com. This technology is evolving fast, and the setup details vary a great deal
by OS. Regardless of how you choose to set up Docker, once you can run docker run

Instantiates a materializer for Akka

Instantiates
a logger Starts a new HTTP

server with defined
routes at a given IP
and port

145Containerizing applications

hello-world and see a successful result, your installation is complete, and you can begin
containerizing applications!

 Next, you’ll need to set up some functionality within your build to help you
containerize your model service. Sbt is a sophisticated build tool that you can use to
do a lot of tasks related to building and deploying your code. For instructions on how
to get started with sbt, see the Download section (www.scala-sbt.org/download.html)
of the sbt website (www.scala-sbt.org). In this case, you’ll use a plugin for sbt called sbt-
docker that will help you work with Docker. To install this plugin, add it to your
/project/plugins.sbt file.

addSbtPlugin("se.marcuslonnberg" % "sbt-docker" % "1.4.0")

Then you’ll enable the plugin in your build by editing your build definition in build.sbt.

enablePlugins(DockerPlugin)

Now that you have the tools in place, you need to define a build for the project. This is
stuff you need to do regardless of whether you use Docker, if you want to define how to
build your code into a runnable artifact. For this build, you’ll use the standard package
build task defined by default in sbt. But thanks to sbt-docker, you can take this further
and define how you’d like the built JAR to be packaged into a Docker container.

dockerfile in docker := {
val jarFile: File = sbt.Keys.`package`

➥ .in(Compile, packageBin).value
val classpath = (managedClasspath in Compile).value
val mainClass = "com.reactivemachinelearning.PredictiveService"
val jarTarget = s"/app/${jarFile.getName}"
val classpathString = classpath.files.map("/app/" + _.getName)

.mkString(":") + ":" + jarTarget

new Dockerfile {
from("java")
add(classpath.files, "/app/")
add(jarFile, jarTarget)
entryPoint("java", "-cp", classpathString, mainClass)

}
}

Listing 7.12 Adding an sbt plugin

Listing 7.13 Enabling an sbt plugin

Listing 7.14 Building a Docker image in sbt

Defines how to build a Dockerfile to
be produced by a docker build task The location to put the

JAR in the output

Looks up the
classpath

Defines the
main class, the
runnable entry

point of the
build, to be

PredictiveService

Looks up the
location of the

JAR file produced Builds up a
classpath string

with the JAR on it
Defines instructions for
constructing a Dockerfile

Base Docker
image to

 build on top of

Adds all the dependencies files on
the classpath and other resources
in the app directory

Adds the built JAR

Defines an entry point of the
application to be running Java with the

classpath to execute the main class

146 CHAPTER 7 Publishing models

Now, with this build defined, run sbt docker to build the app as a JAR inside a Docker
container that will start up the predictive service on initialization.

 Using sbt docker, you skipped over one of the parts of building a Docker image
that you might otherwise have done manually: defining a Dockerfile. The Dockerfile
is essentially the instructions about how to build your Docker image from other
Docker images and the unique resources used in your image. You can find the Dock-
erfile you produced in the target/docker directory of your project. When you open it,
it should look something like the following listing (except much longer).

FROM java
ADD 0/spark-core_2.11-2.0.0-preview.jar 1/avro-mapred-1.7.7

➥ -hadoop2.jar ...
ADD 166/chapter-7_2.11-1.0.jar /app/chapter-7_2.11-1.0.jar
ENTRYPOINT ["java", "-cp", "\/app\/spark-core_2.11-2.0.0

➥ -preview.jar ...
"com.reactivemachinelearning.PredictiveService"]

Your Dockerfile will be much longer, but it shouldn’t be any more complex than list-
ing 7.15. The Dockerfile lists out all the dependencies to be included in the image
and then instructs Java where they are using the -cp (classpath) argument.

 Using this Dockerfile, Docker will build an image containing everything needed to
run your predictive service inside a container and then place that image in your local
Docker repository. In the production pipeline at Hareloom, your team uses their
continuous-delivery infrastructure to push their Docker images to a remote repository
as part of the build process, which works very similarly to the local build you just did.

 You can run the service by calling docker run default/chapter-7 or whatever
Docker told you it had tagged the built image with as a name. Docker will then
retrieve your built image from your local Docker repository and run it.

 There’s still a lot more you could do with this predictive microservice now that you
have it packaged inside a Docker container. It can be deployed into all sorts of envi-
ronments, at massive scale, taking advantage of sophisticated container-management
systems. But we’ll leave the discussion of how to use machine-learned systems in your
live system for chapter 8.

 If you want to go deeper into how to use Docker, this book definitely shouldn’t be
your last stop. Docker in Action by Jeff Nickoloff (Manning, 2016, www.manning.com/
books/docker-in-action) provides a deeper introduction to the larger process of work-
ing with Docker models, and Docker in Practice by Ian Miell and Aidan Hobson Sayers
(Manning, 2016, www.manning.com/books/docker-in-practice, new edition forthcom-
ing) can show you more-advanced aspects of deploying applications using Docker.

Listing 7.15 Dockerfile

Base image being built on
Adds the

dependency
JARs

Adds an
application JAR

Defines the
entry point of the
application to be

running Java
Indicates that Java should be run on the

predictive service to start the application

147Summary

Beyond those books, there’s an ever-increasing amount of resources for working with
containers online.

7.5 Reactivities
 Build a microservice. This book contains a number of examples of building ser-

vices. As you’ve done before, you can implement your own microservice. You
can either take some real functionality you’d like to deploy, like wrapping a
machine-learned model, or you can take a dummy function just to focus on the
service infrastructure. Often when I’m building systems, I take the latter
approach and do something like a service that randomly returns either true or
false. This “random model” allows me to focus on the properties of the service
implementation, independent of the service functionality.

Tools like Akka HTTP make it pretty easy to expose a given function to the
web as a service, so this reactivity can be as simple or as complex as you choose.
With this microservice, you can then begin to think through questions like how
it can be deployed for high load, how failure would be detected and managed,
how it might work in concert with other services, and so on.

 Containerize an application. Take either the microservice from the previous reac-
tivity or some other application and build it into a container. If you really want
to dig into this process, begin with figuring out the requirements of your base
image. What OS will your image contain? If you have a Scala service, how is the
JVM installed and configured? Where do you pick up your dependencies from?
When you make changes to your service, what parts of the image come from
previously built layers versus having to be rebuilt? Can you tell if your applica-
tion was built properly in the container build? How do you start your applica-
tion inside your container?

Summary
 Models, and even entire training pipelines, can be persisted for later use.
 Microservices are simple services that have very narrow responsibilities.
 Models, as pure functions, can be encapsulated into microservices.
 You can contain failure of a predictive service by only communicating via mes-

sage passing.
 You can use an actor hierarchy to ensure resilience within a service.
 Applications can be containerized using tools like Docker.

The full process of model publishing looks a lot different than reusing a model that
you just learned in a REPL like the Spark shell. The tools and techniques you learned
in this chapter will allow you to use machine-learned models in sophisticated real-time
systems of all kinds, which is the topic of chapter 8.

149

Responding

Now we come to the final component of a machine learning system—the part
responsible for using models to respond to user requests and act on the real world
(see figure 8.1). In the last chapter,
we began using models in a more
real-world way than just playing
with them on a laptop. The
approach we took involved build-
ing predictive microservices that
wrapped models and then putting
those microservices into contain-
ers. This chapter continues that
approach by using containerized
predictive services in systems that
are exposed to real requests for
predictions.

This chapter covers
 Using models to respond to user requests

 Managing containerized services

 Designing for failure

Figure 8.1 Phases of machine learning

150 CHAPTER 8 Responding

 Using models in the real world is tough. To learn about all the complexity of using
models in the real world, we need to move from the quiet of the farm to the bustle of
the big city. We’ll consider the fastest-moving animals in the city: turtles.

8.1 Moving at the speed of turtles
One of the most successful startups in the
entire animal kingdom is Turtle Taxi, a
technologically sophisticated take on the
business model of taxis. In many major cit-
ies, they’ve largely displaced legacy trans-
portation businesses like Caribou Cabs.

 Part of their success is due to their user-
friendly mobile app, which allows riders to
hail a taxi from anywhere at any time. But a less obvious part of their success is machine
learning. Turtle Taxi employs a large team of semiaquatic data scientists and engineers
(including you) who perform sophisticated online optimization of their transportation
infrastructure. In comparison to something like a city bus or rail system, the Turtle Taxi
fleet is a much harder system to manage. Because drivers have no fixed schedules and
can drive whenever they choose to, the fleet of vehicles available to serve customers is
always changing. Similarly, customers choose to hail a ride whenever they need one, so
there are no static schedules like in a traditional public-transit system.

 This highly dynamic environment creates huge challenges for the data team at Turtle
Taxi. They need to answer important business questions, including the following:

 Are enough drivers on the road to serve demand?
 Which driver should serve which request?
 Should the price of a ride move up or down based on demand?
 Are customers getting good or bad service?
 Are drivers in the right part of town to serve the demand?

The Turtle Taxi team has spent a lot of time and effort ensuring that their machine
learning system holds to reactive properties. They learn a lot of models to help their
systems make autonomous decisions about all those complex business problems, and
their infrastructure helps them use those models in real time, at scale. We’ll begin with
a simplified view of that infrastructure, leaving discussion of some of the more com-
plex real-world issues for later in the chapter.

8.2 Building services with tasks
In previous chapters, you’ve seen various techniques and tools for building services of
different kinds. In chapter 7 specifically, you used Akka HTTP, a component of the
Akka toolkit, to build your services. Though Akka HTTP is an excellent choice for a
lot of applications, this chapter introduces an alternative library for building services,
called http4s.

151Building services with tasks

 Whereas Akka HTTP developed from work using the actor model of concurrency,
http4s provides a programming model influenced more by functional programming.
The main difference between the two design philosophies manifests in the user API.
When you use http4s, you don’t use actors or set up an execution context for an actor
system. Http4s is part of the Typelevel family of projects (http://typelevel.org) and
uses many other libraries from that group in its implementation. You can build very
complex services using http4s, but you’ll use it here primarily for its simplicity.

 One new concept we should look into before exploring how to build services with
http4s is tasks. Tasks are related to futures but are a more sophisticated construct that
allows you to reason about things like failure and timeouts. Implemented and used
properly, tasks can also be more performant than standard Scala futures due to how
they interact with the underlying concurrency facilities provided by the JVM. In partic-
ular, with tasks you can express computation you might not ever execute. This section
will show you how to use this capability in your programs.

 The implementation of tasks in this chapter comes from the popular scalaz proj-
ect. For those unfamiliar with scalaz, it’s a project focused on providing advanced
functional programming features in Scala, similar to the goals of the Typelevel family
of projects. Unfortunately, scalaz’s implementation of tasks is famously poorly docu-
mented, so I’ll provide you with the basic information necessary to use it here.

NOTE Tasks, like futures, are a powerful concurrency abstraction that can be
implemented in various different ways. Monix (https://monix.io), also from
the Typelevel family of projects, is an alternative implementation of the con-
cept of tasks.

Like futures, tasks allow you to execute asynchronous computation, but futures are
eager, as opposed to lazy, by default. In this context, eager means execution begins
immediately. Assuming that futures are lazy is a common and logical mistake, but
though they’re asynchronous, they’re in fact eager. They start executing immediately,
even if you might like to delay the start of execution. Listing 8.1 demonstrates this
sometimes undesirable property. In this listing and listing 8.2, which demonstrates
tasks, assume that doStuff is an expensive, long-running computation that you only
want to trigger when you’re ready to.

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

def doStuff(source: String) = println(s"Doing $source stuff")

val futureVersion = Future(doStuff("Future"))

Listing 8.1 Eager futures

Imports the execution context
to be used for a Future Defines the

function to
represent your
expensive work

Instantiates a Future
(and starts work)

152 CHAPTER 8 Responding

Thread.sleep(1000)

println("After Future instantiation")

If you execute this code on your console, you should see output like the following:

Doing Future stuff
After Future instantiation

Sometimes this property isn’t an issue, but sometimes it is. For example, if you wanted
to define that long-running computation for all the requests that the service gets, but
only run that computation 1% of the time, a Future would have your service doing 100
times the work you’d want to do. In a system where you have many models available to
make predictions, you might only want to perform the prediction on a small subset of
qualifying requests for any given model. It would be nice to have another option that
doesn’t do work that you don’t want the system to do.

 The next listing shows how tasks behave differently than futures.

import scalaz.concurrent.Task

val taskVersion = Task(doStuff("Task"))

Thread.sleep(1000)

println("After Task instantiation")

taskVersion.run

In contrast to listing 8.1, this code, if executed, should produce output that looks like
the following:

After Task instantiation
Doing Task stuff

Now you have control over when and if you do work like long-running computations.
This is clearly a powerful feature of tasks, and it’s the basis for many of the rest of the
more advanced features of tasks, such as cancelability. When you use http4s to build
services, you don’t need to know too much more than this about tasks, but under-
standing the basis of the performance properties of the library is helpful.

Listing 8.2 Lazy tasks

Waits 1 second to make apparent that
the previous line has begun execution

Shows that the next line of code will
execute only after work from the future
has been submitted for execution

Instantiates a
Task but doesn’t
start work

Waits 1 second to make apparent that the
previous line hasn’t yet begun execution

Shows that an entire
second has passed

Executes the Task

153Predicting traffic

 Tasks are just one aspect of the functionality that http4s provides for building perfor-
mant services. The library also uses scalaz streams to process arbitrary amounts of data.

 That’s just a taste of what you can do with these libraries, but it should be enough
for you to start building predictive services.

8.3 Predicting traffic
Now that I’ve introduced the tools, let’s get back to solving the problem. In particular,
let’s consider the problem of matching taxi drivers to riders. The Turtle Taxi team
uses machine learning to predict successful driver-rider matches. For a given rider,
their system will attempt to predict from a set of available drivers which one the rider
will most likely enjoy riding with (as recorded by the driver rating on the mobile app).
This section will walk through how your team can create a service to make predictions
on this driver-rider match-success problem.

 To begin, you’ll need to create some models to work with. Because the past chap-
ters have already covered several different ways to produce machine-learned models, I
won’t repeat all that material here. To build the infrastructure you need for this chap-
ter, you can use simple stub (fake) models.

 The Turtle Taxi team uses a lot of models, so you’ll start with building support for
multiple models from the beginning. As discussed in chapter 5, using multiple models
in combination is called an ensemble. In this section, you’ll do something a bit different
than an ensemble. Instead of using your models in com-
bination, you’ll use one or the other on any given pre-
diction request. As you’ve seen in previous chapters,
real-world machine learning systems use models in lots
of different ways. Big data teams like Turtle Taxi’s often
produce many models for different purposes. These
models may have different strengths and weaknesses
that the team figures out by using the models. Experi-
mentation on different modeling techniques is an
important part of the machine learning process. Your
Turtle Taxi team has built the system to allow them to
test different learned models in production, so you’ll
approximate that implementation here. In particular,
you’ll build a simple model experimentation system
that will send some traffic to one model and some to
another to evaluate model performance. Figure 8.2
shows a simple form of what you’re going to build.

 Listing 8.3 shows how to create two simple stub
models that predict true or false, structured as ser-
vices. They represent two different models of driver-
rider match success.

Figure 8.2 Model
experimentation architecture

154 CHAPTER 8 Responding

import org.http4s._
import org.http4s.dsl._

object Models {
val modelA = HttpService {

case GET -> Root / "a" / inputData =>
val response = true
Ok(s"Model A predicted $response.")

}

val modelB = HttpService {
case GET -> Root / "b" / inputData =>

val response = false
Ok(s"Model B predicted $response.")

}

}

Note that these models are constructed as HTTP services. Once you finish building all
the necessary infrastructure, they’ll be independently accessible via any client capable
of sending HTTP to them on the network (for example, your local computer).

 Though you haven’t done everything necessary to expose these models as services,
let’s start to flesh out how you’d like to call these services. For development purposes,
let’s assume you’re serving all of your predictive functionality from your local com-
puter (localhost) on port 8080. Let’s also namespace all your models using the name
of a given model under a path named models.

 Using those assumptions, you can create some client helper functions to call your
models from other parts of the system. It’s important to note that you define this cli-
ent functionality in Scala in the same project purely as a convenience. Because you’re
constructing these services as network-accessible HTTP services, other clients could
easily be mobile apps implemented in Swift or Java, or a web frontend implemented in
JavaScript. The client functionality in the next listing is an example of what a con-
sumer of the success match-predictions functionality might look like.

import org.http4s.Uri
import org.http4s.client.blaze.PooledHttp1Client

object Client {

val client = PooledHttp1Client()

private def call(model: String, input: String) = {
val target = Uri.fromString(s"http://localhost:8080/

➥ models/$model/$input").toOption.get

Listing 8.3 Stub models

Listing 8.4 Predictive clients

Defines a
model as an
HTTP service

Uses pattern matching to
determine that the request
to model A has been received

Always
responds true

for model A
Returns an OK status code
with a model’s prediction

Defines a
similar stub

model service
for model B

Always returns false for model B

Creates an object
to contain client

helpers Instantiates an HTTP client
to call modeling services

Factors out the
common steps of
calling models to
a helper function

Dangerous technique: creates a URI to call a model from
dynamic input and forces immediate optimistic parsing

155Predicting traffic

client.expect[String](target)
}
def callA(input: String) = call("a", input)

def callB(input: String) = call("b", input)

}

The use of .toOption.get in listing 8.6 isn’t good style—I’m using it as a develop-
ment convenience. The implementation of the URI-building functionality in http4s is
trying to be a bit safer about dynamically generated values like the name of the model
and the input data. A future refactor of this code could focus on more-sophisticated
error handling or use a statically defined route, but for now you’ll accept that you
could receive unprocessable input that would throw errors.

 You want to expose a public API that abstracts over how many models you might
have published to the server at any given time. Right now, the turtles want to have
model A receiving 40% of the requests for predictions and model B receiving the
remaining 60%. This is an arbitrary choice they’ve made for preferring model B until
model A demonstrates superior performance. You’ll encode that split using a simple
splitting function to divide traffic based on the hash code of the input data, similar to
how you divided data in chapter 6. The next listing shows the implementation of this
hashing function.

def splitTraffic(data: String) = {
data.hashCode % 10 match {

case x if x < 4 => Client.callA(data)
case _ => Client.callB(data)

}
}

If you had more models deployed, you could extend this approach to something more
dynamic based on the total number of models deployed and the amount of traffic
they should receive.

 Now that you have these pieces in place, you can bring all this together into a unified
model server. In this case, you’ll define your public API as located at a path named api
and the prediction functionality as specifically located under the predict path of api.

import org.http4s.server.{Server, ServerApp}
import org.http4s.server.blaze._
import org.http4s._
import org.http4s.dsl._

import scalaz.concurrent.Task

object ModelServer extends ServerApp {

Listing 8.5 Splitting prediction requests

Listing 8.6 A model service

Creates a
Task to define

a request Creates a
function to
call model A

Creates a function to call model B

Function to split traffic based on input Hashes the input and takes
the modulus to determine
which model to use

Uses pattern
matching to

select model A
40% of the time

Uses model B in the
remainder of cases

Defines the model-serving
service as a ServerApp for
a graceful shutdown

156 CHAPTER 8 Responding

val apiService = HttpService {
case GET -> Root / "predict" / inputData =>

val response = splitTraffic(inputData).run
Ok(response)

}

override def server(args: List[String]): Task[Server] = {
BlazeBuilder

.bindLocal(8080)

.mountService(apiService, "/api")

.mountService(Models.modelA, "/models")

.mountService(Models.modelB, "/models")

.start
}

}

Now you can see your model server in action. If you’ve defined a way to build the
application, you can build and run it.

 For an example of how to set up a build for this application, see the online resources
for this book (www.manning.com/books/reactive-machine-learning-systems or https://
github.com/jeffreyksmithjr/reactive-machine-learning-systems). Once your application
can be built, you can issue sbt run, and your service should start up and bind to port 8080
on your local machine.

 You can test your service using a standard web
browser and hitting the API endpoint with various
endpoints. For example, if the string abc represents a
valid feature vector for this service, then hitting
http://localhost:8080/api/predict/abc produces a
prediction of false (no match) from a prediction from
model B.

 Looking back on what you just built, you see some
useful functionality. It has a simple way of handling
multiple models. Moreover, it should be pretty obvious
how you could get at least some elasticity by starting up
more instances of your model services and maybe put-
ting them behind a load balancer.

 You can see a sketch of such an architecture in fig-
ure 8.3. It’s not a bad approach, but it still lacks some real-
ism. Turtles are tough creatures who know how to pre-
pare for the worst that life can throw at them. Let’s look
at how they’ve hardened their machine learning systems.

Defines another
HttpService to
be the primary
API endpoint
for external use

Uses pattern
matching to define
when a prediction
request has been
received

Passes input data to a traffic-
splitting function, immediately
invoking it

Passes through a response
with an OK status

Defines the
behavior of
the server

Uses the
built-in

backend
from Blaze

to build
the server

Binds to port
8080 on a

local machine

Mounts an API service
to the path at /api

Attaches a service for
model A to the server
at /models

Attaches a service for
model B to the server
at /models

Starts the server

Figure 8.3 Load-balanced model
services

157Handling failure

8.4 Handling failure
As you’ve seen multiple times in this book, things fail. Whether those things are pan-
golins, poison dart frogs, or plain old databases, nothing runs without errors.

 Model services are no different. You get some nice properties from pulling apart
the different components of your system, like containment and the ability to supervise
components. But your current implementation is still vulnerable to the consequences
of failure.

 Let’s examine how you can deal with failure by building a model that fails half the
time. That should give you plenty of opportunity to deal with failures. Listing 8.9 is
another simplified stub model like the ones you built earlier, but with one important
difference: it treats half of all requests as bad requests and fails to return a prediction.

import scala.util.Random

val modelC = HttpService {
case GET -> Root / "c" / inputData => {

val workingOk = Random.nextBoolean()

val response = true

if (workingOk) {
Ok(s"Model C predicted $response.")

} else {
BadRequest("Model C failed to predict.")

}
}

}

This irritatingly unreliable model is a good stand-in for the real possibility of failure
in your system, so how could you handle the possibility of this failure? You can build
the possibility of failure into your system using supervisory hierarchy, as you saw in
chapters 2 and 3.

 The next listing begins this refactor by tweaking how you call the model services.

private def call(model: String, input: String): Task[Response] = {
val target = Uri.fromString(

s"http://localhost:8080/models/$model/$input"
).toOption.get

client(target)
}

def callC(input: String) = call("c", input)

Listing 8.7 An unreliable model

Listing 8.8 Refactored calling services

Creates an HttpService for model C

Defines the same GET
endpoint as the other models

Simulates an occasional
failure with a random
Boolean value

Always predicts
true when the
service works

Determines
whether the service

is in a working or
nonworking state

Returns a normal
successful prediction

Fails to predict,
returns a BadRequest
status code

Redefined call
helper function

Calls a target with a client
and returns Task[Response] Defines a helper function

for calling model C

158 CHAPTER 8 Responding

After this refactor, the call to the service returns a Task[Response]. I think this
approach is a bit more straightforward about what work you’re doing. Specifically, this
new type signature encodes two bits of knowledge: that this call will take time to do,
and that this call will return a Response, which might not be a successful one.

 Next, let’s see how you can handle the possibility of failure at the top level. Before,
you had a mere ModelServer whose job was just to handle passing around data from
requests to models and back. With these changes, you’re beginning to build a Model-
Supervisor, something with a hierarchical responsibility to decide what to do in the
event of undesirable outcomes. In this context, you want to recognize when models
fail and pass any messages about that failure back to the user. That’s a design choice.
In other situations, you might want to do something different, such as return a default
response. The point is that you now explicitly handle failure and make a decision that
you can see in source code about what to do about it.

import org.http4s.server.{Server, ServerApp}
import org.http4s.server.blaze._
import org.http4s._
import org.http4s.dsl._

import scalaz.concurrent.Task

object ModelSupervisor extends ServerApp {

def splitTraffic(data: String) = {
data.hashCode % 10 match {

case x if x < 4 => Client.callA(data)
case x if x < 6 => Client.callB(data)
case _ => Client.callC(data)

}
}

val apiService = HttpService {
case GET -> Root / "predict" / inputData =>

val response = splitTraffic(inputData).run

response match {
case r: Response if r.status == Ok =>

➥ Response(Ok).withBody(r.bodyAsText)
case r => Response(BadRequest).withBody(r.bodyAsText)

}
}

override def server(args: List[String]): Task[Server] = {
BlazeBuilder

.bindLocal(8080)

.mountService(apiService, "/api")

.mountService(Models.modelA, "/models")

.mountService(Models.modelB, "/models")

Listing 8.9 A model supervisor aware of failure modes

Redefined traffic-
splitting function

Defines the last
40% of traffic as
being allocated

to model C

Pattern matches
on the result of
calling a service

Returns successful
responses with the
model’s prediction
as the body of the
responses

Returns failed
responses with a

failure message as the
body of the responses

159Handling failure

.mountService(Models.modelC, "/models")

.start
}

}

Again, you can do whatever you choose in the case clause that defines how you han-
dle failure, because now you have explicit control via the supervisory structure.

 Now let’s see how this structure works. To do the next phase of testing, I suggest we
stop writing Scala code and instead use command-line utilities. Specifically, let’s use
cURL, a useful, open source tool you may already have installed on your system (if
you’re using macOS or Linux). If you’re using Windows, you may need to download
the latest version from the cURL website (https://curl.haxx.se).

 With cURL, you can send data to your API server and model services in the same
way you were doing with the web browser before. The advantage of using cURL is that
you can set more options around how you interact with your server-side applications
and how you inspect their results. In the following examples, you’ll use the -i option
to inspect the HTTP headers being returned from your services.

 The nest listing introduces how to use cURL by calling to an API endpoint that
maps to a model that it’s behaving normally.

$ curl -i http://localhost:8080/api/predict/abc
HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8
Date: Sun, 02 Oct 2016 21:07:31 GMT
Content-Length: 114

Model B predicted false.

That all works fine, but what if you use the periodically unreliable model C? In some
cases, it will behave like this.

$ curl -i http://localhost:8080/api/predict/abe
HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8
Date: Sun, 02 Oct 2016 21:12:32 GMT
Transfer-Encoding: chunked

Model C predicted true.

Listing 8.10 A successful response

Listing 8.11 A possible successful response

Adds model C to the
services being served

Calls for a prediction
and shows headers

OK status code
from a header

Information about the
response sent back

Prediction of model B

Calls for a different
prediction, maps to
a different model

Successful response

Prediction of model C

160 CHAPTER 8 Responding

Everything is fine, and you see exactly what you expect to see. But the other half of the
time, you should see a failed request that looks something like this.

$ curl -i http://localhost:8080/api/predict/abe
HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=UTF-8
Date: Sun, 02 Oct 2016 21:27:33 GMT
Transfer-Encoding: chunked

Model C failed to predict.

As expected, sometimes model C completely drops the ball. That’s bad news for taxi-
driving turtles. This failure to predict could have very negative consequences for the
rest of the system, depending on how the caller was implemented. At its worst, this
failure could bring down the whole process of matching riders to drivers, and that
could mean lost fares.

 Yet this failure, like lots of real-world failures, is ephemeral; the model doesn’t
always fail to predict. When it does return a prediction, you have no reason to not use
it. The model should be a pure, stateless function. You can still build a solution that
accommodates the possibility of failure—it will just take a bit more effort. One possi-
ble solution could look like the following listing, which sets up retry logic.

private def call(model: String, input: String) = {
val target = Uri.fromString(s"http://localhost:8080/

➥ models/$model/$input").toOption.get
client(target).retry(Seq(1 second), {_ => true})

}

With this approach, you’ll immediately halve the failure rate by retrying once. For the
dummy unreliable model, this retry strategy could asymptotically approach full
reliability.

8.5 Architecting response systems
This chapter introduced some strategies for using models to respond to requests from
users outside your machine learning system. I’ve tried to keep things realistic enough
to be useful by including complications like multiple models and the possibility of fail-
ure. But believe it or not, the real Turtle Taxi machine learning system is more compli-
cated than this. It has millions of users, with tens to hundreds of thousands of users
active at a given time. Riders need to be connected to available drivers in their area
within seconds and picked up within minutes—otherwise, the Turtle Taxi business will
grind to a halt and fail. With all these demanding real-world needs, the team’s real
infrastructure looks a bit more like figure 8.4.

Listing 8.12 A possible failed response

Listing 8.13 Adding a retry to calls to models

A failed response from
a prediction request

Failure message

Retries after 1 second
for all failures

161Architecting response systems

Just as you implemented in this chapter, all models are individual services, but each of
those services is independently packaged in some form or another. Docker is a common
choice, using techniques like you explored in the last chapter. But the JVM also con-
tains an approach to packaging—building JARs—that can be used on some application-
serving platforms. You worked with JARs a little in chapter 7, and in chapter 9 you’ll
work with them in more detail.

 Each of these model services is hosted on what I’m calling an application-serving
platform, but is sometimes called a container orchestration platform (usually, when it’s
focused on using Docker or other forms of containers). Examples of platforms like
this are Marathon (https://mesosphere.github.io/marathon) and Kubernetes
(http://kubernetes.io), both open source software; Amazon’s EC2 Container Service
(https://aws.amazon.com/ecs); Microsoft’s Azure Container Service (https://azure
.microsoft.com/en-us/services/container-service); and Kubernetes Engine (https://
cloud.google.com/kubernetes-engine), which are all cloud-hosted services. A key
aspect of these solutions is that they allow you to host packaged applications and man-
age them using some interface. They all offer a level of intrinsic containment by isolat-
ing the resources used by any one application from all other applications, thus
limiting the possibility of problems like error propagation.

 As you’ve seen in this chapter, once you have models available for use, there’s still a
lot to figure out. Figure 8.4 represents a lot of the functionality you worked on in this
chapter as the model supervisor. It also makes clear that many of the networking com-
ponents you implemented in Scala in this chapter are often handled by another com-
ponent, which the diagram calls a proxy. The role of this component is purely to route
requests for predictions to the specific service that should serve them. Examples of
applications that can serve this role are NGINX (www.nginx.com) and HAProxy

Figure 8.4 Model-serving architecture

162 CHAPTER 8 Responding

(www.haproxy.org). In practice, many container-oriented platforms can also handle
some amount of this networking complexity. Note that both the model supervisor and
the proxy could in principle be hosted on the same application-serving platform as
the model services. However it’s implemented, the job of this component is the same:
to give the model supervisor the ability to manage models and the traffic sent to them.

 Architectures like this are nontrivial to implement. Typically, you’d need a whole
team of smart turtles to stand up all these components and get them working effec-
tively in concert.

 But you can certainly build incrementally from the simplified designs you imple-
mented in this chapter toward the more sophisticated approaches. The underlying
principles of reactive design remain the same.

8.6 Reactivities
 Build a pipeline of data transformations using tasks. Now that you’ve seen them in

action, you may be interested in doing a bit more with tasks. One logical use case
for tasks is compute-intensive data-transformation pipelines. Such pipelines are
common in machine learning, especially (but not exclusively) in feature-
generation pipelines. One of the nice things about tasks is that they can be
composed in various ways and then run concurrently. You can try implementing
things like y-shaped operation graphs in your pipeline, where two dependent
steps must execute concurrently before a third can begin.

If you want to dig deeper into the behavior of your pipeline, try introducing
faults into one of the steps via bad data or some other technique:

– How does your pipeline react when it encounters bad input?
– Is that behavior what you want?
– If not, how could you change it?

 Deploy a containerized service to an application-serving platform. If you’ve been
following along in this book, you should have a service that builds inside a
container. The great thing about containers is that they’re portable, so deploy
that service somewhere. Quite a few different cloud vendors supply container-
hosting services, and usually your initial usage is free (see section 8.5 for a few
options). You can also choose to deploy your containers to an application-serving
platform that you yourself are hosting. That’s a bit more involved, but if you
happen to already have something like Marathon on a Mesos cluster running at
your office, you can use one of those options as well.

Once you’ve deployed the service, you can think through what it might mean
to operate it on an ongoing basis:

– What would happen if requests to the service increased dramatically?
– How can you tell that the deployed service is doing what it’s supposed to do?
– How can you roll back to a previous version of your service?

163Summary

– What would happen to your service if one of the underlying servers for the
application-serving platform went away? (If you don’t know the answer, you
could always send a shutdown command to a server under your control and
see what happens!)

Summary
 Tasks are useful lazy primitives for structuring expensive computations.
 Structuring models as services makes elastic architectures easier to build.
 Failing model services can be handled by a model supervisor.
 The principles of containment and supervision can be applied at several levels

of systems design to ensure reactive properties.

This concludes part 2 of the book. In part 3, we’ll explore some of the more advanced
issues involved with keeping a machine learning system running, changing, and scaling.

Part 3

Operating
 a machine learning system

Whereas part of this book focused on getting to the point of a having an
entire machine learning system, part 3 is about what comes next. All sorts of
work must be done over the lifetime of operating a machine learning system,
making it possible for you to change and improve the system.

 Chapter 9 goes deeper into how to build and deploy machine learning sys-
tems. It covers best practices developed for the operations of other sorts of soft-
ware applications and applies them to the unique responsibilities of a reactive
machine learning system.

 Chapter 10 works through how you can incrementally improve the intelli-
gence capabilities of a system. It introduces the far-reaching ambitions of artifi-
cial intelligence platforms. This final chapter provides the book’s most
expansive perspective on how to design systems. I encourage you to adopt this
broad perspective as a way of thinking about the skills you’ve developed as an
architect of reactive machine learning systems.

167

Delivering

Now that you’ve seen how all the components of a machine learning system work
together, it’s time to think about some system-level challenges. In this chapter, we’ll
explore how to deliver a machine learning system for use by the ultimate customers
of the system. The approach we’ll use for this challenge is called continuous delivery.
The ideas behind continuous delivery were developed outside of a machine learning
context, but as you’ll see, they’re entirely applicable to the challenge of making
machine learning reactive.

 Continuous delivery practitioners seek to rapidly deliver new units of function-
ality through regular cycles that build and deploy new code. Teams that take on this
approach are often trying to move fast while keeping users happy. The techniques
of continuous delivery provide tactics that allow teams to fulfill these competing
aims. Given all the ways you’ve seen for machine learning systems to fail, I hope it’s
clear that maintaining consistent behavior in these systems is tough stuff. Uncer-
tainty is pervasive and intrinsic in machine learning systems.

This chapter covers
 Building Scala code using sbt

 Evaluating applications for deployment

 Strategies for deployments

168 CHAPTER 9 Delivering

9.1 Shipping fruit
The team you’ll join in this chapter is composed of some of the most customer-
focused, empathetic animals in the entire jungle: gorillas. Jungle Juice Box (JJB) is a
primate startup focused on animals who like to make fruit smoothies in their own
home (figure 9.1). Each month, subscribers to Jungle Juice Box receive a box of fresh
fruit that has been individually selected for them, based on what fruit is in season and
the customer’s perceived preferences.

As with most startups today, the gorillas of Jungle Juice Box use sophisticated data
techniques to satisfy their customers. In particular, they regularly gather feedback rat-
ings from all their subscribers so they can use machine learning to make unique fruit
recommendations for each subscriber. The architecture of the portion of the system
concerned with fruit recommendations looks something like figure 9.2.

Figure 9.1 Jungle Juice Box

Figure 9.2 Fruit-selection
architecture

169Building and packaging

Past subscriber ratings of fruit selections, stored in a database, are used to produce
features and concept labels for training instances. Models are then learned from
those instances in the model-learning pipeline. Those models are included in the
build of the larger application in the build pipeline. The build pipeline produces an
artifact that’s then deployed to production systems on an application-serving platform
for use in real-time fruit-selection decisions. All this should look relatively familiar
from part 2 of the book. This chapter focuses on the key part of the system where new
models are evaluated and deployment decisions are made. Within the JJB system, this
point is the build-and-deploy pipeline.

9.2 Building and packaging
At this point, it’s worth taking a quick step back and examining what I mean by build-
ing code. In this book, you’ve primarily built applications in Scala, which runs on top of
the Java Virtual Machine (JVM). At a minimum, your source-code files need to be
compiled into bytecode for execution by the JVM, but you often need to do more
than compile your code. Sometimes, there are resource files, like the Parquet and
JSON model files you produced in chapter 7. These other types of artifacts are part of
what you need to run your code, even if they’re directly output by the scalac com-
piler. Usually, all you need to do with such files is ensure that they can be passed
around with the rest of your code. This process is often called packaging.

 Chapter 7 demonstrated one powerful approach to packaging using Docker con-
tainers. But there are certainly other approaches you can take to package your appli-
cations. Anything that gives you a coherent way of grouping all the executable code
and necessary resources for your application is a potentially viable option.

 Because the gorillas at JJB build their machine learning systems in Scala, they use a
packaging method from the JVM ecosystem: building JARs. As discussed in chapter 7,
JARs are archives of compiled JVM code and associated resources. When working with
Scala, you have several ways that you can produce JARs. The Jungle Juicers use a
method that’s executed from sbt and relies on a plugin to extend sbt’s ability to pro-
duce deployable artifacts.

 The way the Juicers distribute the executable version of their application is in a
JAR containing all the necessary dependencies (libraries) that the application needs.
The artifact produced by this style of packaging is sometimes called a fat JAR, meaning
it contains all the dependencies that could otherwise potentially be provided by the
execution environment. They choose this approach because it simplifies some aspects
of distributing and executing their application.

 To get started, you’ll need to add the sbt-assembly plugin to your project. Within
your project, create a directory called project and a file named assembly.sbt in that direc-
tory. That file should contain the instructions to add the sbt-assembly plugin.

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.3")

Listing 9.1 Adding sbt-assembly

170 CHAPTER 9 Delivering

Then you need to define a build, as in the next listing, which shows how your JJB team
sets up a build.

lazy val http4sVersion = "0.14.6"

libraryDependencies ++= Seq(
"org.http4s" %% "http4s-dsl" % http4sVersion,
"org.http4s" %% "http4s-blaze-server" % http4sVersion,
"org.http4s" %% "http4s-blaze-client" % http4sVersion,
"org.http4s" %% "http4s-argonaut" % http4sVersion

)

mainClass in Compile := Some

➥ ("com.reactivemachinelearning.ModelServer")

If you’ve done all that correctly, you can now build your project by issuing the com-
mand sbt assembly. The command will produce a JAR containing all your code and
resources, along with all the dependencies your code requires. The assembly task will
tell you where this JAR is with a message that says something like, “Packaging /your-
app/target/scala-2.11/your-app-assembly-1.0.jar....” This single archive can now be
passed around to any execution environment that can run JVM code.

9.3 Build pipelines
This build-and-packaging step is just one of multiple possible steps executed by real-
world build pipelines like the one at Jungle Juice Box. In their pipeline, they need to
get their code, build it, test it, package it, and publish the resulting artifact. This pipe-
line must also be executed on a build server of some sort that already has the neces-
sary software installed, such as Git and sbt. The pipeline also expects that certain
environment variables are present in the execution environment. For more on the use
of environment variables, see the discussion in chapter 4. Finally, the pipeline assumes
that it’s being executed on a Unix-like environment (for example, Ubuntu Linux).
The next listing shows an approximation in shell script of how all of this comes
together into a pipeline.

#!/bin/sh

cd $PROJECT_HOME

git pull

sbt compile

sbt test

Listing 9.2 An SBT build

Listing 9.3 Build pipeline

Defines dependencies

Sets the main class, to
be executed when the
archive is run

Navigates to the root
project directory using
an environment variable

Pulls down the latest version of the code

Compiles the project

Tests the project

171Evaluating models

sbt assembly

rsync -a $PROJECT_HOME/target/scala-2.11/fruit-picker-assembly-1.0.jar \
username@artifact_server:~/jars/fruit-picker/$VERSION_NUMBER

Just to be clear, this is a simplified version of a build pipeline. Note that calling sbt
test would itself invoke compilation, removing the need for the sbt compile step.
Both steps are shown just for clarity about the steps in the process. The use of rsync, a
Unix utility for copying data between locations such as remote servers, is a simple, if
crude, approach. This publishing step uses the directory structure and a name to
organize the different artifacts for different versions of the application, instead of a
more sophisticated technique, like publishing to a Maven repository. If you know
much about build pipelines, this one may seem crude, but even a simple build pipe-
line like this can be illustrative.

 First, you have a step that’s reserved for evaluation of your application, the test
step. This is a great location to put any tests that evaluate models, similar to the tech-
niques you saw in chapter 6. If any of those tests fail, the build pipeline will halt and
not publish the application. Second, you’re merely publishing at the end of the pipe-
line. As you’ve done several times before, you make the new artifact available for use,
but you don’t immediately change the state of the running application. Instead, you
leave that decision for another system component.

9.4 Evaluating models
Now that you’ve built a minimal version of a build pipeline, let’s consider how to
make some decisions in the pipeline. In chapter 6, you worked through how to evalu-
ate models and determine whether they should be used. Now you can bring those
skills into play in the larger mission of building and deploying components of a
machine learning system.

 The Jungle Juicers, like the members of most machine learning teams, don’t want
to deploy broken functionality. In their case, the consequence would be bad—no pre-
dictions of which fruits their subscribers would want—so they’ve developed a range of
safety mechanisms designed to keep their machine learning system stable. One of
those is the model-evaluation step in their deploy process.

 In this step, models are verified as being better than some standard before being
deployed. If the models pass the test, then the application can be used in production.
If not, this version of the application shouldn’t be used, and production systems
shouldn’t be updated.

 In chapter 6, I showed how to assess a model’s performance relative to a random
model. That’s not the only approach you can use to determine whether a model is
usable in your production system. Table 9.1 shows advantages and disadvantages of
some of the alternatives.

Packages the project into a fat JAR

Publishes the JAR to a remote
server using rsync under a

version-numbered directory

172 CHAPTER 9 Delivering

In the case of Jungle Juice Box, they plan to use a fixed value, 90% precision, to deter-
mine if a learned model should be deployed. The choice of 90% is arbitrary, but it
matches well with their intuition about how models map to subscriber satisfaction with
fruit recommendations. On the downside, manually performing this assessment and
checking these values for every single learned model would be a laborious process, so
let’s look at how this step can be integrated into a more automated process.

9.5 Deploying
At this point, you may feel confident about your models based on the guarantees that
the validations in the build pipeline give you. You could potentially move forward with
deployment. In this context, deployment means to publish the component of your
machine learning system and start acting on real user requests, as we explored in
chapter 8. For your JJB team, the component system in this step looks something like
figure 9.3.

 After tests have passed, the application JAR is pushed to a remote artifact reposi-
tory. Then the build pipeline calls the application-serving platform’s API to start the

Table 9.1 Model deployment criteria

Criterion Advantages Disadvantages

Better than random Very unlikely to reject a use-
ful model

A low bar for performance

Better than some fixed
value

Can be designed to match
business requirements

Requires an arbitrary parameter

Better than the previous
model

Guarantees monotonically
increasing performance

Requires accurate knowledge of the previ-
ous model’s performance post-deployment

Figure 9.3 Model deployment

173Deploying

deployment of the application. The serving platform will need to provision the neces-
sary resources, download the JAR to a sandbox, and then start the application.

 How often should you deploy the system? What determines that you should do a
deploy? This is actually a very complicated topic. Roughly speaking, there are four
approaches to when you deploy and why, as shown in table 9.2.

As you can see, there are some complex trade-offs to consider when deciding how to
structure your deployment process. The Jungle Juice Box team chooses a continuous
deployment process, after using other processes earlier in the company’s history. In
their experimentations with variations on the approaches in table 9.2, they found that
less-frequent deploys led them to underinvest in their build-and-deploy infrastructure.
They didn’t deploy that often, and when they did, it was so painful that they wanted to
work on anything else, once the deploy was done, instead of improving the deploy pro-
cess. When they decided that they needed to ship updates to the fruit-recommendation
system more quickly, they realized they needed to implement the capabilities that would
allow them to continuously deploy their system.

 At a base level, they need reliable tests that will tell them whether their application
can be deployed. Those tests need to be used by an automated build pipeline capable
of determining whether the application should be deployed and then proceeding
with that deployment.

 They wind up with a flow that looks like figure 9.4, where a series of automated
decisions are made to ensure that a given deployment is safe. Note that the predictive
system’s capability is tested at two levels. First, unit tests verify properties of the system
that can be assessed without using much data. Then, after a deployable version of the
application has been built, that release candidate is evaluated on a larger set of data.
In this step, metrics about the system’s performance are assessed to ensure that the
system as a whole can do a sufficiently good job of its core mission: predicting

Table 9.2 Approaches to deployments

Style Criteria Frequency Advantages Disadvantages

Ad hoc None Variable, but
often infrequent

Simple and
flexible

Deploys can be difficult due
to low deployment skills
and/or automation

At milestones Achieving some
meaningful develop-
ment milestone

Weeks to
months

Clarifies plan-
ning around
deploys

Unplanned deploys can be
hard

Periodically Reaching a deter-
mined amount of
time

Days to weeks Regularity
builds skills
and speed

Can be labor intensive

Continuously Committing to the
master branch

Multiple times
per day

Fast
responses to
change

Requires investment in pre-
deploy enabling capabilities

174 CHAPTER 9 Delivering

subscribers’ fruit preferences. This particular technique is sometimes called a metrics-
based deploy. Only when both levels of testing have been passed do you call the
command to start the application.

 With this approach to ensuring application safety in place, the Jungle Juice Box
team gets to work in a powerful way. All commits to the master branch of the applica-
tion’s repository invoke a deploy, so they’re happening all the time, usually many

Figure 9.4 Automatic deployment
of the fruit-prediction system

175Summary

times a day. That means the fruit-prediction system is always reflecting pretty much
the latest and greatest out of the JJB data team. When something goes wrong, the
team is able to respond quickly and get the system fixed in a relatively short amount of
time. Usually, nothing goes wrong—the tests are doing all the work of ensuring that
things are fine, so the team does other stuff instead of worrying about whether the
deploy went well. Mostly, they don’t think about deploys at all and stay focused on the
hard work of building better machine learning systems.

9.6 Reactivities
Here are a few reactivities to take you deeper into the jungle of building and deploy-
ing machine learning systems:

 Try building your application with a different build tool. Quite a few build tools target
the JVM, like Ant, Maven, and Gradle. How does another build tool approach
the task of building a deployable JAR?

 Add validations. Using either the sbt build in this chapter or your alternative
build from the previous reactivity, add additional validations to your build.
These validations could be any arbitrary “business logic” you want. For example:
– Only build and deploy on weekdays.
– Test-set performance must be higher than an arbitrary threshold.
– No new dependencies have been added.

 Write a deployment script and execute it regularly. In this reactivity, you’re not
necessarily focused on the application’s functionality, so your deploy can be
something simple, like sending yourself an email that says that the deploy
happened or using your computer’s built-in voice to announce, “Deploy
complete!” Once you implement your deployment script, ask yourself questions
about its behavior:
– What will happen if the deployment fails?
– How could I “roll back” a deployment?
– How long will deployments take? What functionality guarantees the respon-

siveness expectation?
– What would happen if many different processes were running this deploy-

ment at the same time?

Summary
 Scala applications can be packaged into archives called JARs using sbt.
 Build pipelines can be used to execute evaluations of machine learning func-

tionality, like models.
 The decision to deploy a model can be made based on comparisons with mean-

ingful values, like the performance of a random model, previous models’ per-
formance, or some known parameter.

176 CHAPTER 9 Delivering

 Deploying applications continuously can allow a team to deliver new functional-
ity quickly.

 Using metrics to determine whether new applications are deployable can make
a deployment system fully autonomous.

Many of the techniques discussed in this chapter are defensive in nature—they pro-
tect you from the possibility of deploying a broken application. In the next chapter,
we’ll consider what happens when failure of your live system does happen.

177

Evolving intelligence

We’ve covered a lot of territory in our exploration of machine learning, but before
we wrap up, we’re going to expand our perspective just a bit more to consider the
exciting world of artificial intelligence. To do that, we’ll have to shrink down and
explore one of the most complex societies in all of tech: bees who use instant
messaging.

10.1 Chatting
The bees at Buzz Me have built one of the hottest apps in the insect world. They
have literally trillions of users, all of whom spend a large portion of their working
day coordinating with their hive mates via instant messaging. Although instant mes-
saging has been around for millennia (in bee years), Buzz Me has recently taken
over the market with a slick design that makes chatting about work as fun as setting
up a night out with friends (figure 10.1).

This chapter covers
 Understanding artificial intelligence

 Working with agents

 Evolving the complexity of agents

178 CHAPTER 10 Evolving intelligence

Figure 10.1 Buzz Me

Figure 10.2 Buzz Me bot platform

 As part of their expansion plans, the team
at Buzz Me is developing a platform for bots
(or agents). These bots will interact with their
users in real time, taking on all sorts of simple,
tedious, repetitive tasks (figure 10.2). Their
plan for how to build these bots involves a
sophisticated system that goes a bit beyond
machine learning into the wider territory of
artificial intelligence.

10.2 Artificial intelligence
Artificial intelligence (AI) is the overarching
field of which machine learning is a part. In
this book, we’ve already covered topics out-
side the range of what is usually thought of
as machine learning. Typically, machine
learning is concerned only with the process
of a model learning from data and demon-
strating that it’s capable of performing bet-
ter after the learning process, as discussed in chapters 4 through 6 of this book. Areas
like data collection and responding to user input aren’t well represented in tradi-
tional machine learning literature, but they are found in the broader discussions of
AI. You could view reactive AI as the topic of this book.

 The main reason I’ll start to discuss things in AI terms is to talk about an AI con-
cept called an agent. At its simplest, an agent is a software application that can act on
its own. This chapter doesn’t talk about the simplest forms of agents. Instead, it talks
about AI agents that can sense data in their environment, make decisions about that
data, and act on those decisions, within the environment—all while holding to the
principles of reactive design.

 Being capable of autonomous response to user input is the minimum requirement
of the initial implementation of the bots on the Buzz Me platform. But as you join the
bee team in this chapter, you’ll see that the team and bot developers in general bene-
fit from shooting for higher levels of functionality. Ideally, our agents will be capable
of all sorts of useful things, like answering common questions, setting up meetings,
and ordering office supplies. We may not be able to build bots as smart as bee bots,
but we should easily be able to develop bots that are useful.

10.3 Reflex agents
To get your agent to do anything, you’ll have to figure out how it decides what to do.
The simplest way an agent can make decisions is through deterministic rules. An
agent that operates in this manner can be called a reflex agent. Strictly speaking, lots of

179Reflex agents

applications fulfill the nominal requirements for being a reflex agent, but here I’m
only talking about those applications designed to operate as agents.

 You’ll begin building your agent as a simple reflex agent. This agent will eventually
be a sort of insect buddy, with various likes and dislikes that users get to know through
regular interactions. Eventually, your team wants the agent to be able to take on useful
work, but they’re beginning with small talk to help the user get accustomed to the
idea of chatting with an agent. By introducing agents with some sort of “personality,”
the team believes users will become acclimated to agents as toys first and then later
use them as tools.

 To begin your implementation, the following listing gives the agent the capability
to answer questions about its likes and dislikes as evidence of its “personality.”

object ReflexAgent {

def doYouLike(thing: String): Boolean = {
thing == "honey"

}

}

This reflex agent can now receive questions in the form of strings and respond with
whether it likes them or not. In this case, the agent has extremely simple tastes and likes
only honey. Even in this simple implementation, you can employ functional
programming principles. Specifically, the input string is immutable data that’s never
changed, and the doYouLike function is a pure function, having no side effects. The
next listing shows how this agent can be asked what it does and doesn’t like.

scala> import com.reactivemachinelearning.ReflexAgent
import com.reactivemachinelearning.ReflexAgent

scala> ReflexAgent.doYouLike("honey")
res0: Boolean = true

scala> ReflexAgent.doYouLike("flowers")
res1: Boolean = false

Your reflex agent certainly seems to work, although it’s clearly very limited. But even
simplistic reflex agents can be useful. For example, some agents developed for the
Buzz Me bot platform are using text as a way of invoking commands. They don’t need

Listing 10.1 A reflex agent

Listing 10.2 Talking to a reflex agent

Defines an agent as a singleton
object for expedience

Expresses things to like as
strings, and likes as Booleans

Defines an agent to
like only honey

Imports the agent for use
in this console session

Asks whether the
agent likes honey

true
indicates
the agent

likes honey.
Asks whether the
agent likes flowers

false indicates the agent
doesn’t like flowers.

180 CHAPTER 10 Evolving intelligence

to contain any intelligence; they just need to send the user data back to some backend
service and respond.

 People have built agents that handle simple tasks like setting reminders and dis-
playing random GIFs. Whether or not the developer thinks of their software as an
agent, we can take that perspective even for such simple applications. But we’re not
interested in such simple agents. There’s more interesting stuff we could do with
more-intelligent agents.

10.4 Intelligent agents
The next level of complexity we’ll consider is an agent that doesn’t just do things, but
actually knows things as well. If an agent is designed in such a way that it has a store of
knowledge, then it can be called an intelligent agent. Thinking in terms of software, if a
reflex agent is essentially a function, then an intelligent agent must be a function over
some data other than the input arguments.

 Throughout this book, we’ve been looking at machine learning systems that con-
tain databases of facts. The knowledge component of an intelligent agent is more of
the same. Ideally, the knowledge in an intelligent agent is implemented as an
immutable log of facts. It would also be helpful if the facts in that database were
expressed in an uncertainty-aware manner that acknowledged that various possible
scenarios could be true at a given time.

 But none of that is strictly required to fulfill your definition. For that matter, this
database of knowledge doesn’t even have to be a database. It can be a simple in-
memory data structure, which is what you’ll start with in the following listing.

class IntelligentAgent(likes: Set[String]) {

def doYouLike(thing: String): Boolean = {
likes.contains(thing)

}

}

This agent is only a bit more complex to implement than the previous one, but it
meaningfully expands the possible range of functionality of the agent. Instead of hav-
ing its likes fixed in the implementation of the agent itself, the agent’s likes are now
factored out to data that can be passed in at construction. This means you can instan-
tiate an arbitrary number of such agents, with whatever likes you choose, rather than
being constrained to a singleton, as you were with the reflex agent.

 The next listing shows how to instantiate and interact with this intelligent agent.

Listing 10.3 An intelligent agent

Constructs an intelligent
agent with a set of likes

Still takes in things to like
as a string and returns a
Boolean result

Defines likability as a presence
within a set of known things

181Learning agents

scala> import com.reactivemachinelearning.IntelligentAgent
import com.reactivemachinelearning.IntelligentAgent

scala> val aBeesLikes = Set("honey", "flowers")
aBeesLikes: scala.collection.immutable.Set[String] = Set(honey, flowers)

scala> val agent = new IntelligentAgent(aBeesLikes)
agent: com.reactivemachinelearning.IntelligentAgent =

➥ com.reactivemachinelearning.IntelligentAgent@2bdf3b2

scala> agent.doYouLike("honey")
res0: Boolean = true

scala> agent.doYouLike("flowers")
res1: Boolean = true

scala> agent.doYouLike("birds")
res2: Boolean = false

This is just one possible configuration of the agent that you’ve created. You can con-
tinue to create more agents, each with likes appropriate for the given agent. At this
level of complexity, you’ve already implemented as much intelligence in your agent as
exists in many real-world products called chatbots. The agent has a fixed amount of
knowledge that won’t change, but in principle, you can fill it up with as much data as
you have. Many chatbots don’t have more capability than this simple intelligent agent.
They may have much more knowledge in their implementation, in the form of
canned responses to provide, but those responses don’t change over time.

 Developers on the Buzz Me platform have discussed using such capabilities for
cases like simple customer service, where the intelligent agent retrieves the best
answer from a set of FAQs. For such simple applications, machine learning isn’t always
required—user questions could be matched to answers from the FAQs using string-
matching techniques alone. It’s also possible to build entertaining chatbots for things
like games and toys using this technique. In either case, the implementers of the
agent ultimately make all the decisions about exactly what the agent will do in
response in all cases. Intelligent agents are definitely more useful than reflex agents,
but you can build even more powerful agents if you want.

10.5 Learning agents
Once you’ve built an intelligent agent, it’s worth asking what its limitations are. Look-
ing critically at your agent, it should be clear that it will always remain somewhat
bound by the core agent function that you’ve implemented. Sure, it can continue to
ingest new facts, but it will never really alter its behavior that much in response to new

Listing 10.4 Talking to an intelligent agent

Imports an intelligent agent for
use within a console session

Defines a small
set of things a
particular bee
might like

Instantiates a new
intelligent agent
with those likes

The intelligent agent
still likes honey.

It also likes flowers.

It doesn’t know about birds,
so it doesn’t like them.

182 CHAPTER 10 Evolving intelligence

input. To see new capabilities emerge, you’re going to have to put your machine
learning skills to use and teach this agent how to learn.

 Similar to the definition of machine learning itself, the definition of a learning
agent is an agent that can improve its performance given exposure to more data. That
sounds similar to what a intelligent agent is supposed to be, but there’s an important
difference. An intelligent agent that lacks learning capabilities is unable to alter the
mapping of inputs (features) to outputs (concept labels). What we aspire to build in a
learning agent is an agent that can get better merely through acquiring more data,
just as we humans do.

 To begin building your learning agent, let’s go beyond raw strings and create some
meaningful types. Your agents have been replying whether or not they like various
things, so, in the following listing, let’s call those replies sentiments and create case
objects sharing a common sentiment type.

object LearningAgent {

sealed trait Sentiment {
def asBoolean: Boolean

}

case object LIKE extends Sentiment {
val asBoolean = true

}

case object DISLIKE extends Sentiment {
val asBoolean = false

}

}

If you’re familiar with C++, Java, or C#, this implementation may remind you of the
concept of enumerations. This sealed trait with its two implementations serves a similar
function. Only the two implementations in this source file will be able implement the
sentiment trait, making them the entirety of all members of the set of sentiment types.
The sealed functionality will ensure that, even if you want to add future implementa-
tions, you’ll be required to do it in this same source file.

 With these types, you can now begin to build out a learning agent.

class LearningAgent {

import com.reactivemachinelearning.LearningAgent._

Listing 10.5 Sentiment types

Listing 10.6 A simplistic learning agent

Companion object to hold some
learning-agent functionality

Defines a sealed trait as the
basis for a sentiment type

Objects
of this type

have a Boolean
representation.

Like sentiment represented
as a true in Boolean

Dislike sentiment
represented as a
false in Boolean

Defines a learning-agent class Imports types from a
companion object

183Learning agents

val knowledge = new mutable.HashMap[String, Sentiment]()

def observe(thing: String, sentiment: Sentiment): Unit = {
knowledge.put(thing, sentiment)

}

def doYouLike(thing: String): Boolean = {
knowledge.getOrElse(thing, DISLIKE).asBoolean

}

}

This simple learning-agent implementation now has new capabilities that the previous
agents didn’t have: a changeable set of knowledge and an interface to take in new
knowledge (the observe function). As modeled here, learning is the process of
recording expressed sentiments that have been passed into the agent. Unlike the pre-
vious agents, this learning agent starts out with no likes or dislikes, but it can accumu-
late sentiments through the process of ingesting observations. The next listing shows
an example interaction with the learning agent.

scala> import com.reactivemachinelearning.LearningAgent
import com.reactivemachinelearning.LearningAgent

scala> import com.reactivemachinelearning.LearningAgent._
import com.reactivemachinelearning.LearningAgent._

scala> val agent = new LearningAgent()
agent: com.reactivemachinelearning.LearningAgent =

➥ com.reactivemachinelearning.LearningAgent@f7247de

scala> agent.observe("honey", LIKE)

scala> agent.observe("flowers", LIKE)

scala> agent.doYouLike("birds")
res1: Boolean = false

scala> agent.observe("birds", LIKE)

scala> agent.doYouLike("birds")
res1: Boolean = true

As this session shows, the agent is capable of changing its sentiments over time, based
on the data that it’s seen. The agent knows exactly what the user has instructed it—

Listing 10.7 Talking to a simplistic learning agent

Creates a modifiable collection of observations
about things and their likability

Observes a
thing and

whether to
like it

Records that observation in a
data structure of knowledgeTakes things

to like as a
string and
returns a
Boolean Checks for the presence of a

thing in known likes and
returns false if it’s not known

Imports an agent

Imports a
functionality in a
companion object

Instantiates a new
learning agent

Observes some
common likes

The agent doesn’t know about
birds, so it doesn’t like them.

Observes that the agent
should, in fact, like birds

Now the agent likes birds.

184 CHAPTER 10 Evolving intelligence

things the user likes or dislikes—and presumes that any new piece of data will be
disliked.

 An agent like this can be used for cases like accumulating user preferences or sur-
veys. Changing its behavior is simple: expose it to more data. This agent doesn’t infer
much about the data that it’s observed, though. The learning algorithms you’ve seen
in this book attempt to generalize from a given set of data what the mapping is from
features to concept labels/values. The simplistic learning agent in listing 10.7 doesn’t
do that, so let’s whip up something that does. Given that we spent all of chapter 5
working through how to implement real learning algorithms, I’m going to show you
an utterly silly one for a change of pace. In this case, you’re going to build a classifier
with an underlying algorithm based on inferences made according to the vowels
within a word in a given observation. This isn’t useful in the real world, but it should
help make the actions of the machine learning model through the training process
more explicitly comprehensible than is possible in a more complex model. You can
see an example of how this works in listing 10.9, but you need to start by implement-
ing the agent in the next listing.

class LearningAgent {

val learnedDislikes = new mutable.HashSet[Char]()

def learn() = {

val Vowels = Set[Char]('a', 'e', 'i', 'o', 'u', 'y')

knowledge.foreach({
case (thing: String, sentiment: Sentiment) => {

val thingVowels = thing.toSet.filter(Vowels.contains)
if (sentiment == DISLIKE) {

thingVowels.foreach(learnedDislikes.add)
}

}
}
)

}

def doYouReallyLike(thing: String): Boolean = {
thing.toSet.forall(!learnedDislikes.contains(_))

}

}

Again, the knowledge in the agent is dynamic and can be changed via observation.
But the API of this agent is a bit closer to some of the machine learning libraries you
used in previous chapters. Specifically, it treats the learning of a model from observed

Listing 10.8 A more complex learning agent

Adds new functionality to
an existing agent class

Dislikes are
stored as vowel

characters to
dislike.Function to

invoke the
learning
process Set of vowels to reference

Iterates through all entries in the knowledge base
Pattern matches on

things and known
sentiments about

them

Finds vowels in a
given thing to like

Determines whether
the thing is disliked

If the item is disliked, add its
vowels to a set of disliked vowels.

New function to access an
alternative form of likability

Likes only things with
no disliked vowels

185Reactive learning agents

data as a distinct step that must be invoked (via the learn method). The next listing
shows how you interact with this agent.

scala> val agent = new LearningAgent()
agent: com.reactivemachinelearning.LearningAgent =

➥ com.reactivemachinelearning.LearningAgent@61cc707b

scala> agent.observe("ants", DISLIKE)

scala> agent.observe("bats", DISLIKE)

scala> agent.doYouReallyLike("dogs")
res7: Boolean = true

scala> agent.doYouReallyLike("cats")
res8: Boolean = false

This agent, even though it’s never heard anything about dogs or cats, presumes it will
like dogs and dislike cats. At this point, you have something that’s truly using machine
learning (even if the learning algorithm is silly). This is about where the traditional
machine learning literature stops discussing the work of agent design. But in the real
world, your agent might encounter more problems. Let’s see how you might use reac-
tive techniques to enhance the design of your agent.

10.6 Reactive learning agents
As you’ve done many times in this book, you’re now going to take a basic design of a
machine learning system and attempt to improve it through the application of design
principles from reactive systems. Proceeding from those principles, let’s ask questions
about your current design.

10.6.1 Reactive principles

Is the agent responsive? Does it return sentiments to users within consistent time
bounds? I don’t see any functionality that guarantees much of anything in that
respect, so let’s answer that with a no.

 Is the agent resilient? Will it continue to return responses to users, even in the face
of faults in the system? Again, I see no functionality to support this property, so let’s
call that a no, as well.

 How about elasticity? Will the agent remain responsive in the face of changes in
load? It’s not entirely clear that it will. So, again, we’ve got a no.

 Finally, does the agent rely on message passing to communicate? This doesn’t
really seem to be the case either, so, no.

 It looks like the agent pretty much fails our assessment. The agent isn’t necessarily
a bad design, but it doesn’t attempt to provide the sorts of guarantees that we’ve been
focused on in this book, so let’s work on that.

Listing 10.9 Talking to a more complex learning agent

Creates a new agent

Sets up some
observed dislikes

The agent generalizes from past
observations that it would like dogs.

The agent generalizes from past
observations that it wouldn’t like cats.

186 CHAPTER 10 Evolving intelligence

10.6.2 Reactive strategies

Drawing from your toolbox of reactive strategies, let’s try to use what you know to
identify opportunities to improve the agent’s design.

 Looking at replication, are there ways to use multiple copies of the data to improve
the reactivity of the agent? The store of knowledge is the primary bit of data, so that
could be offloaded to an external distributed database. You could also replicate the
agent itself, having more than one copy of your entire learning agent.

 How about containment? Are there ways of containing any possible errors the
agent might make? It seems likely that the agent could get some form of bad data, so if
you introduced message passing, you could probably get greater containment of
errors within the agent.

 Lastly, how could supervision help out? Typically, supervision is most useful in
terms of error handling or managing load. If the agent were replicable, it could be
supervised, and then new agents could be spawned in the event of the failure of any
given agent. Similarly, a supervisor could spawn new agents if the existing agents were
insufficient for the load being experienced at the time.

10.6.3 Reactive machine learning

You haven’t learned only general reactive principles and strategies in this book. Look-
ing at the world through the lens of reactive machine learning, you’ve learned to
appreciate the properties of data in a machine learning system.

 Data in a machine learning system is effectively infinite in size and definitionally
uncertain.

 If you wanted to use laziness in your design, you could probably improve the
responsiveness and elasticity of your system.

 You’re already using pure functions where appropriate, but you might look for
more places to use them. The great thing about pure functions is that they work well
with replication to handle arbitrary amounts of data.

 Immutable facts are always a great approach for a store of machine-learned knowl-
edge, and you’re largely already using that approach. Observations made by the agent
are never discarded or changed in any way.

 And if you wanted to, you could add more sophistication to your design by consid-
ering the various possible worlds that might be true of the concepts that your machine
learning system is attempting to model.

10.7 Reactivities
After a whole book of building reactive machine learning systems, you should now
know more than enough to build something really great for these bees and their bot
platform. I won’t show you a particular solution. I’ll leave that up to you as a final reac-
tivity. The next couple of sections go into more detail about the dimensions that you
can consider when you implement your bot platform. This reactivity is worthwhile to

187Reactivities

walk through, even if you only design but don’t implement your solution, because
many of the questions speak to high-level architectural issues in your design.

10.7.1 Libraries

You’ve used various libraries/frameworks/tools in this book. Often, those libraries
have given your applications properties that would be laborious to implement other-
wise. In the case of this bot platform, are there libraries that might help you make this
system more reactive?

 Let’s start with Spark. In this book, you’ve mostly used Spark as a way of building
elastic, distributed, data-processing pipelines, but that’s not all it can do. Spark is gen-
erally a great tool for building distributed systems, not just batch-mode jobs. You could
certainly hold the agents in your system inside Spark data structures. That would allow
you to use the strategy of replication.

 Keeping your agent data distributed throughout a cluster should help with elastic-
ity, because requests to agents can be served from multiple nodes in the cluster. Simi-
larly, Spark’s built-in supervision capabilities can help with resilience.

 If a node in the cluster goes down, the Spark master won’t send it work and may
potentially bring up new nodes, depending on how your implementation works with
the underlying cluster manager.

 Useful as Spark is, it’s not the only tool in your toolbox. Akka has many of the same
strengths—as you might expect, because Spark used Akka internally in earlier versions
of the library. An Akka implementation of a bot platform might be more natural in
some ways. You could model agents as actors, which are somewhat similar concepts; an
actor is like an agent that uses only message passing as its form of actuation. But as
you’ve seen, message-driven applications can have really great properties.

 Thanks to a message-driven design, an Akka implementation could easily con-
tain the errors of agents on the platform. There’s no reason why errors in a given
agent should contaminate another agent if both are modeled as distinct actors. In
this way, Akka actors aren’t too different from the model microservices you built in
chapter 7.

 All actor systems are organized around supervisory hierarchies. The benefit of
this is that the supervisory actors can take actions to improve the elasticity and resil-
ience of the system by spawning new actors in cases of high load or killing actors
that are misbehaving.

 Of course, it’s great to not have to design how all these actors compose by using
libraries like Akka HTTP. Despite the power and flexibility of Akka, it abstracts all
sorts of complexity in system design, allowing you to minimize the amount of focus
that you spend on things like message-passing mechanics and how to manage super-
vision trees.

188 CHAPTER 10 Evolving intelligence

10.7.2 System data

Finally, let’s look at the data in your system and see what design choices can be made.
First, if you presume that your data is effectively infinite in scale, then how should that
influence the design of the system?

 Typically, that implies that you’re building a distributed system. You’ve spent a fair
bit of time on Spark and Akka in this book, and they can both be used to build highly
reactive distributed systems. But this concern about data scale isn’t just about data pro-
cessing; it’s relevant to data storage as well. As discussed in chapter 3, there are lots of rea-
sons to ensure that the backing data store for your system is a highly replicated
distributed database of some kind. Your options include self-hosted databases like Cas-
sandra, MongoDB, and Couchbase as well as cloud-native databases provided as services
like DynamoDB, Cosmos DB, and Bigtable. All the databases just mentioned (and too
many more to enumerate) use techniques like replication and supervision to ensure
elasticity, resilience, and responsiveness. There’s not one good choice; there are many.
But there’s no need to begin your design with a traditional nondistributed relational
database. Better ways of building systems are available via simple API calls to cloud ven-
dors. That’s not to say that you shouldn’t consider using the relational model for your
data, but if you do, definitely consider using a distributed relational database like Span-
ner or CockroachDB.

 While you’re thinking about the consequences of effectively infinitely sized
datasets, let’s think some more about how you can use other tools in your toolbox. For
example, how are you going to design a development workflow that allows you to
iterate on system design locally while still maintaining parity with a large-scale
production deployment?

 As you’ve seen before, one technique you can use is laziness. For example, if you
compose your feature-generation and model-learning pipeline as a series of transfor-
mations over immutable datasets using Spark, then that pipeline will be composed in
a lazy fashion and executed only once a Spark action has been invoked. You used this
method of pipeline composition extensively in chapters 4 and 5.

 Similarly, you’ve already seen lots of ways to use pure, higher-order functions as
ways of implementing transformations on top of immutable datasets. As you’ve seen in
several chapters, the use of pure functions enables various techniques for dealing with
arbitrarily sized datasets. Where can you use pure functions in your system implemen-
tation? You’ve certainly seen how pure functions can be used in feature generation.
In your bot platform implementation, does it make sense to have models themselves
be functions? For example, could you refactor listing 10.6 to structure likes using
pure functions?

 Let’s also think about the certainty of your data. Throughout this book, you’ve
taken the approach that data in your machine learning system can’t be treated as cer-
tain—that all data in a machine learning system is subject to uncertainty. Instead of

189Reactivities

treating the concept of sentiment as a Boolean, it could instead be modeled as a level
of confidence in positive sentiment, along the lines of the following listing.

object Uncertainty {

sealed trait UncertainSentiment {
def confidence: Double

}

case object STRONG_LIKE extends UncertainSentiment {
val confidence = 0.90

}

case object INDIFFERENT extends UncertainSentiment {
val confidence = 0.50

}

case object DISLIKE extends UncertainSentiment {
val confidence = 0.30

}

}

This listing is a sketch of a simplistic way of encoding some uncertainty within the data
model. A more sophisticated approach would likely involve calculating the level of
confidence for any given sentiment prediction, as you’ve seen previously in the book.

 By modeling your data as uncertain, you open the door to reasoning about the
range of possible states that the concept being modeled could be in. How could your
system design evolve to incorporate this style of reasoning? A given agent could return
some of this uncertainty to the user by returning the top N results by confidence. Or, if
multiple agents could be addressed to perform a given task for a user, then the Buzz
Me bot platform could develop its own models of confidence in each and every agent.
Then the supervisory component (which might itself be modeled as an agent) could
dynamically choose which agent would be best suited to fulfill a given user task based
on its confidence level in each agent, as in figure 10.3.

 With all these questions and tools in mind, you could now build a pretty sophisti-
cated solution for AI agents that converse with insects via instant messaging.

Listing 10.10 Uncertain data model for sentiments

Requires all uncertain
sentiments to have a
confidence level

Defines a sealed trait to structure
different sentiment levels

Instance of an uncertain
sentiment, representing
a strong like sentiment

Strong like sentiment modeled as 90%
confidence of a positive sentiment

Indifferent sentiment modeled as 50%
confidence of a positive sentiment

Dislike sentiment modeled as 30%
confidence of a positive sentiment

190 CHAPTER 10 Evolving intelligence

10.8 Reactive explorations
At the end of each chapter, I’ve asked you to go out and apply the concepts of reactive
machine learning to new challenges via the reactivities. This section explores how you
can take others on a journey through the use of reactive techniques using a tool I like
to call a reactive exploration.

 In a reactive exploration, you ask questions about an existing system or compo-
nent, examining it with its implementers/maintainers. You could start this explora-
tion by just dropping a copy of this book on someone’s desk and telling them to read
it all before you talked—or you could try to ease into the topic by having a more gen-
eral conversation.

10.8.1 Users

I like to begin by trying to figure out who the user is. That question can be trickier
than it sounds. The user isn’t always the literal customer of the company. For many
machine learning components, the user is some other developer or team that relies
on the machine learning system to perform useful functionality. One way to get at
firm agreement on who this person is to ask, “Who would care if we all stopped com-
ing in to work?” Once you’ve got that person characterized, you can place them on

Figure 10.3 Agent supervision

191Reactive explorations

the board, using a cartoon animal or some other representa-
tion (figure 10.4).

 Then you need to establish how this user interacts with
your system. Specifically, you want to identify all the compo-
nents of a request-response cycle. Examples of a request-
response cycle could include the following:

 For an ad-targeting system, the user could send a
request for an ad along with some browser data and
get back the ID number of the ad to show.

 For a spam filter, the user could send an email and get
back a classification as spam or not spam.

 For a music-recommendation system, the user could
send a subscriber’s listening history and get back a list
of recommended songs.

10.8.2 System dimensions

If you’ve properly defined it, this request-response cycle is the basis of the commit-
ment your system has with its users. That allows you to ask questions motivated by
reactive design principles without first having to introduce all the terminology used in
this book and other discussions of reactive.

 Here are four dimensions that you can ask questions about for a given system.
First, you can ask questions about response time in the system:

 When will this system return responses to the user?
 How quickly does the user expect a response?
 How much will that response time vary?
 What functionality within the system is responsible for ensuring that the system

responds within that time?
 What will happen on the user’s end if the response isn’t returned within the

time expectation?
 Do you have any data around what real response times are?
 What would happen if the system returned responses instantaneously?

Next, you can ask questions about the behavior of the system under varying levels of
load:

 What sort of load do you expect for this system?
 What data do you have about past historical load?
 What if the system was under 10 times the load you expect? 100 times? More?
 What would the system do under no load?
 What sort of load would cause the system to not return a response to a user

within the expected time frame?

Figure 10.4 An unhappy
user of a non-reactive
machine learning system

192 CHAPTER 10 Evolving intelligence

After that, you can move on to questions about error handling:

 What are some past bugs that this system has experienced?
 What behavior did the system exhibit in the presence of those errors?
 Have any past errors caused the system to violate the expectations of the user in

the request-response cycle?
 What functionality exists within the system to ensure that errors don’t violate

user expectations?
 What external systems is the system connected to?
 What sorts of errors could occur in those external systems?
 How would this system behave in the presence of those errors from external

systems?

Finally, you can ask about the communication patterns within the system:

 If one part of the system is under high load, how is that communicated?
 If an error occurs in one part of the system, how is that communicated to other

components?
 Where do the component boundaries exist within the system?
 How do the components share data?

10.8.3 Applying reactive principles

For the attentive reader, the four dimensions of system behavior in the previous sec-
tion should have sounded very familiar. They’re restatements of the reactive princi-
ples that you’ve been using all through this book, as you can see in table 10.1.

Done with a legitimate curiosity about the behavior of the machine learning system,
this exercise should leave you with a lot of interesting follow-up questions to try to
answer. Very often, you won’t really know how a system will behave under certain con-
ditions, and you won’t be able to point to any functionality responsible for ensuring
that the system fulfills user expectations in a given scenario. That gives you the oppor-
tunity to figure out how to apply all the tools and techniques that you’ve learned in
this book, guided by the user needs that you uncovered in the reactive exploration.

Table 10.1 Mapping from system dimensions to reactive principles

System dimension Reactive principle

Time Responsive

Load Elastic

Error Resilient

Communication Message-driven

193Summary

Summary
 An agent is a software application that can act on its own.
 A reflex agent acts according to statically defined behavior.
 An intelligent agent acts according to knowledge that it has.
 A learning agent is capable of learning—it can improve its performance on a

task given exposure to more data.

That’s the end of the book. I’ve shown you all that I can. Now it’s your turn to show
me just how amazing the machine learning systems you build will be. Happy hacking!

195

appendix
Getting set up

Scala
Almost all of the code in this book is written in Scala. The best place to figure out
how to get Scala set up for your platform is the Scala language website (www.scala-
lang.org), especially the Download section (www.scala-lang.org/download). The
version of Scala used in this book is Scala 2.11.7, but the latest version of the 2.11
series should work just as well, if there is a later version of 2.11 when you’re reading
this. If you’re already using an IDE like IntelliJ IDEA, NetBeans, or Eclipse, it will
likely be easiest to install the relevant Scala support for that IDE.

 Note that all of the code provided for the book is structured into classes or
objects, but not all of it needs to be executed that way. If you want to use a Scala
REPL or a Scala worksheet to execute the more isolated code examples, that will
generally work just as well.

Git code repository
All the code shown in this book can be downloaded from the book’s website (www
.manning.com/books/reactive-machine-learning-systems) and also from GitHub
(https://github.com) in the form of a Git repo. The Reactive Machine Learning Systems
repo (https://github.com/jeffreyksmithjr/reactive-machine-learning-systems)
contains a project for each chapter. If you’re unfamiliar with version control using Git
and GitHub, you can review the bootcamp articles (https://help.github.com/
categories/bootcamp) and/or beginning resources (https://help.github.com/
articles/good-resources-for-learning-git-and-github) for learning these tools.

sbt
This book uses a wide range of libraries. In the code provided in the Git repo, those
dependencies are specified in such a way that they can be resolved by sbt. Many Scala
projects use sbt to manage their dependencies and build the code. Although you
don’t have to use sbt to build most of the code provided in this book, by installing it

196 APPENDIX Getting set up

you’ll be able to take advantage of the projects provided in the Git repo and some of the
specific techniques around building code shown in chapter 7. For instructions on how
to get started with sbt, see the Download section (www.scala-sbt.org/download.html) of
the sbt website (www.scala-sbt.org). The version used in this book is sbt 13.9, but any later
version in the 13 series should work the same.

Spark
Several chapters of this book use Spark to build components of a machine learning
system. In the code provided in the GitHub repo, you can use Spark the way you
would use any other library dependency. But having a full installation of Spark on
your local environment can help you learn more. Spark comes with a REPL called the
Spark shell that can be helpful for exploratory interaction with Spark code. The
instructions for downloading and setting up Spark can be found in the Download
section (http://spark.apache.org/downloads.html) of the Spark website (http://
spark.apache.org). The version of Spark used in this book is 2.2.0, but Spark generally
has a very stable API, so various versions should work nearly identically.

Couchbase
The database used in this book is Couchbase. It’s open source with strong commercial
support. The best place to start with getting Couchbase installed and set up is the
Developer section (http://developer.couchbase.com/server) of the Couchbase site
(www.couchbase.com). The free Community Edition of Couchbase Server is entirely
sufficient for all the examples shown in this book. The version used in this book is 4.0,
but any later version of the 4 series should work as well.

Docker
Chapter 7 introduces how to use Docker, a tool for working with containers. It can be
installed on all common desktop operating systems, but the process works differently,
depending on your OS of choice. Additionally, the tooling is rapidly evolving. For the
best information on how to get Docker set up on your computer, visit the Docker web-
site: www.docker.com.

197

index

Symbols

* function 100
+ function 49

A

actor model 29–31
agent 178
Akka toolkit 29–34

actor model 29–31
ensuring resilience with 31–34
HTTP modules 142–144

application-serving platform 161
applications, containerizing 144–146
artificial intelligence

applying reactive principles 192–193
intelligent agents 180–181
learning agents 181–185
libraries 187–188
overview 178
reactive learning agents 185–187

machine learning 186–187
principles 185–186
strategies 186

reflex agents 178–180
system data 188–190
system dimensions 191–192
users 191

artistic styles, learning 110–115
asInstanceOf 124

B

Bayes’ rule 96
binarize function 78

BinaryLogisticRegressionSummary 124
binning 78
buckets 56
build pipelines 170–171

C

cache method 36
Caffe 110
central control 66
chatbots 181
circuit breaker pattern 32
class label 9
collecting data

applications of 66–67
at scale 48–53
overview 52–53

concept 9
concept labels 182
confusion matrix 123
connector 109
containers

container orchestration platform 161
containerizing applications 144–146

continuous delivery 167
convention 85
Couchbase 55, 196
create operation 53
cross validation 138

D

daemon 111
data

collecting
applications of 66–67

INDEX198

data (continued)
at scale 48–53
overview 52–53

leakage 129–130
persisting 53–66

distributed-fact databases 62–66
elastic databases 54–55
fact databases 55–57
querying persisted facts 57–62
resilient databases 54–55

system data 188–190
uncertain, sensing 44–48

data aggregations 48
data feeds 46
data leakage 129
data points 9
databases

distributed-fact 62–66
elastic 54–55
fact 55–57
resilient 54–55

Databricks 115
DataFrame 73, 81, 103
decision tree 104
DecisionTreeClassificationModel 106
delay of execution 16
delete operation 53
dense formats 103
deployments 172–175
design document 58
discrete concepts 9
distributed database 54
distributed systems, maintaining state in 48–52
distributed-fact databases 62–66
Dockerfile 146
document stores 56
doYouLike function 179
drop-out rate 124

E

elastic databases 54–55
ensemble 107, 153
enumerations 182
enumerator 60
event sourcing 68
ExecutionContextExecutor 143
extraction operation 71

F

facade pattern 109
facades, building 109–115
fact 47
fact databases 55–57

failure handling 157–160
fake models 153
false feature value 95
false positive rate 124
false predictions 123
fat JAR 169
feature vector 9
features

extracting 71–74
feature set composition 86–90
generating 71, 82–86
selecting 80–82
structuring code 82–90
transforming 74–80

feature transforms 76–79
transforming concepts 79–80

find operation 86
finite batches 17
folding 49
fraud detection 118–119
functional programming 17

G

Generator trait 83
get operation 26
getRemoteVotes function 27
Git code repository, setting up 195
GitHub repo 196

H

HAProxy 161
hashingTF 75
higher-order functions 17, 36
hold-out data 119–121, 130
hyperparameter optimization 138

I

immutable facts 18
in-sample data 35
infinite data 32
infinite streams 17
instances 9
intelligent agents 180–181

J

JJB (Jungle Juice Box) 168
JVM (Java Virtual Machine) 169

K

KISS (Keep It Simple, Sparrow) principle 79

INDEX 199

L

Label trait 80
LabeledPoint type 36
laziness 16
learn method 185
learning agents, reactive systems and 181–187

machine learning 186–187
principles 185–186
strategies 186

learning algorithms 94–102
Bayes' rule 96–97
implementing Naive Bayes 98–102

libraries 187–188
LIBSVM syntax 9
lineage 131
LogisticRegressionModel 123

M

machine learning
overview 186–187
reactive systems and 4–20

building prototype 4–7
creating 16–20
disadvantages of 20

Marathon 161
message-driven system 13
metrics-based deploy 174
microservices 141
MLlib framework

building pipelines 102–106
evolving modeling techniques 107–109

model learning
building facades 109–115
implementing learning algorithms 94–102

Bayes' rule 96–97
implementing Naive Bayes 98–102

MLlib 102–109
building pipelines 102–106
evolving modeling techniques 107–109

model library 141
models

evaluating 171–172
data leakage 129–130
detecting fraud 118–119
hold-out data 119–121
recording provenance 130–132

evolving techniques for 107–109
model metrics 122–127
persisting 136–141
publishing 10, 144–146
serving 141–144

Akka HTTP 142–144
microservices 141

testing 127–129

ModelType value 112
Monix 151
MVCC (multiversion concurrency control) 65

N

Naive Bayes 96–102
naive technique 97
neural networks 109
neuralserver 111
NGINX 161
None value 26
numerical feature 76

O

observe function 183
Option type 26

P

packaging 169–170
paired matches 95
pangolins 51
pattern matching 26
persisting

data 53–66
distributed-fact databases 62–66
elastic databases 54–55
fact databases 55–57
querying persisted facts 57–62
resilient databases 54–55

models 136–141
pip install command 111
PipelineModel 76
pipelines 39, 102–106, 170–171
PipelineStage 104
Pooch Predictor tool 4, 8
possible worlds 18–19
predicates 85
predict function 100
predict route 143
PreyReading class 57
provenance 130–132
publishing models 144–146
pupdates 4, 17
pure functions 17
Pyro 111

Q

QuantileDiscretizer 137
querying persisted facts 57–62

INDEX200

R

random forests 107
RDDs (resilient distributed datasets) 36
reactive systems 11–15

learning agents 185–187
machine learning 7–20, 186–187

creating 16–20
disadvantages of 20
systems 4–7

principles 185–186, 192–193
strategies 14–15, 186
traits of 13–14

read operation 53
recall 123
referential transparency 17, 121
reflex agents 178–180
regularization parameters 139
replication 14
resilience, ensuring with Akka 31–34
resilient databases 54–55
responding 10

architecture of response systems 160–162
building services with tasks 150–152
handling failures 157–160
predicting traffic 153–157

ROC (receiver-operating characteristic) 124

S

save operation 139
sbt build tool, setting up 195–196
sbt-assembly plugin 169
sbt-docker command 146
Scala programming language 24–29, 39

managing uncertainty in 25–26
setting up 195
uncertainty of time 26–29

services, building with tasks 150–152
serving models

Akka HTTP 142–144
microservices 141

Sniffable app 4
sniffers 4
Some value 26
spam filter 191
Spark framework 34–38, 196
Spark ML, generating features with 71
Spark shell 196
SparkSession object 35
sparse formats 103
state, maintaining in distributed systems 48–52
stored query 58
stub implementation 74
style net 110

supervised learning 9
system data 188–190
system dimensions 191–192

T

tail latency 28
tasks, building services with 150–152
TensorFlow 110
TensorFlowOnSpark 115
term frequency 75
test set 35
testing models 105, 127–129
thresholds 126
tokenization 72
traffic, predicting 153–157
training models 105
traits 82
transform function 84
transformation operation 71
transforming

concepts 79–80
features 74–80

true feature value 95
true positive rate 124
true predictions 123
TRUE variable 89
Typelevel 151

U

uncertainty
managing in Scala 25–26
of time 26–29
sensing in data 44–48

update operation 53
users 191

V

var object 32
VectorAssembler 138
VectorIndexer 104
VGG (Visual Geometry Group) 110
VoteWriter function 33

W

WordSequenceFeature 73
wrapper 109
WriterSupervisor function 33

Z

zipping 85

Jeff Smith

I
f you’re building machine learning models to be used on a
small scale, you don’t need this book. But if you’re a de-
veloper building a production-grade ML application that

needs quick response times, reliability, and good user experi-
ence, this is the book for you. It collects principles and prac-
tices of machine learning systems that are dramatically easier to
run and maintain, and that are reliably better for users.

Machine Learning Systems: Designs that scale teaches you to
design and implement production-ready ML systems. You’ll
learn the principles of reactive design as you build pipelines
with Spark, create highly scalable services with Akka, and use
powerful machine learning libraries like MLib on massive
datasets. The examples use the Scala language, but the same
ideas and tools work in Java, as well.

What’s Inside
● Working with Spark, MLlib, and Akka
● Reactive design patterns
● Monitoring and maintaining a large-scale system
● Futures, actors, and supervision

Readers need intermediate skills in Java or Scala. No prior
machine learning experience is assumed.

Jeff Smith builds large-scale machine learning systems using
Scala, Akka, and Spark.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/machine-learning-systems

$44.99 / Can $59.99 [INCLUDING eBOOK]

Machine Learning Systems

MACHINE LEARNING/SOFTWARE ENGINEERING

M A N N I N G

“This book doesn’t just cover
tools; it covers the whole
job of building an entire

 machine learning system.”
—From the Foreword by

Sean Owen
Director of Data Science, Cloudera

“A helpful guide for data
engineers building resilient

 machine learning systems.”—Jonathan Woodard, AT&T

“A fantastic entry to the
world of robust machine
learning systems that will

 scale with your business.”
—Tommy O’Dell

Virtual Gaming Worlds

“You cannot afford to ignore
this book!”

—José San Leandro, OSOCO

See first page

	Machine Learning Systems
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized
	Code conventions and downloads
	Book forum
	Other online resources

	about the author
	about the cover illustration
	Part 1: Fundamentals of reactive machine learning
	Chapter 1: Learning reactive machine learning
	1.1 An example machine learning system
	1.1.1 Building a prototype system
	1.1.2 Building a better system

	1.2 Reactive machine learning
	1.2.1 Machine learning
	1.2.2 Reactive systems
	1.2.3 Making machine learning systems reactive
	1.2.4 When not to use reactive machine learning

	Chapter 2: Using reactive tools
	2.1 Scala, a reactive language
	2.1.1 Reacting to uncertainty in Scala
	2.1.2 The uncertainty of time

	2.2 Akka, a reactive toolkit
	2.2.1 The actor model
	2.2.2 Ensuring resilience with Akka

	2.3 Spark, a reactive big data framework

	Part 2: Building a reactive machine learning system
	Chapter 3: Collecting data
	3.1 Sensing uncertain data
	3.2 Collecting data at scale
	3.2.1 Maintaining state in a distributed system
	3.2.2 Understanding data collection

	3.3 Persisting data
	3.3.1 Elastic and resilient databases
	3.3.2 Fact databases
	3.3.3 Querying persisted facts
	3.3.4 Understanding distributed-fact databases

	3.4 Applications
	3.5 Reactivities

	Chapter 4: Generating features
	4.1 Spark ML
	4.2 Extracting features
	4.3 Transforming features
	4.3.1 Common feature transforms
	4.3.2 Transforming concepts

	4.4 Selecting features
	4.5 Structuring feature code
	4.5.1 Feature generators
	4.5.2 Feature set composition

	4.6 Applications
	4.7 Reactivities

	Chapter 5: Learning models
	5.1 Implementing learning algorithms
	5.1.1 Bayesian modeling
	5.1.2 Implementing Naive Bayes

	5.2 Using MLlib
	5.2.1 Building an ML pipeline
	5.2.2 Evolving modeling techniques

	5.3 Building facades
	5.3.1 Learning artistic style

	5.4 Reactivities

	Chapter 6: Evaluating models
	6.1 Detecting fraud
	6.2 Holding out data
	6.3 Model metrics
	6.4 Testing models
	6.5 Data leakage
	6.6 Recording provenance
	6.7 Reactivities

	Chapter 7: Publishing models
	7.1 The uncertainty of farming
	7.2 Persisting models
	7.3 Serving models
	7.3.1 Microservices
	7.3.2 Akka HTTP

	7.4 Containerizing applications
	7.5 Reactivities

	Chapter 8: Responding
	8.1 Moving at the speed of turtles
	8.2 Building services with tasks
	8.3 Predicting traffic
	8.4 Handling failure
	8.5 Architecting response systems
	8.6 Reactivities

	Part 3: Operating a machine learning system
	Chapter 9: Delivering
	9.1 Shipping fruit
	9.2 Building and packaging
	9.3 Build pipelines
	9.4 Evaluating models
	9.5 Deploying
	9.6 Reactivities

	Chapter 10: Evolving intelligence
	10.1 Chatting
	10.2 Artificial intelligence
	10.3 Reflex agents
	10.4 Intelligent agents
	10.5 Learning agents
	10.6 Reactive learning agents
	10.6.1 Reactive principles
	10.6.2 Reactive strategies
	10.6.3 Reactive machine learning

	10.7 Reactivities
	10.7.1 Libraries
	10.7.2 System data

	10.8 Reactive explorations
	10.8.1 Users
	10.8.2 System dimensions
	10.8.3 Applying reactive principles

	Appendix: Getting set up
	Scala
	Git code repository
	sbt
	Spark
	Couchbase
	Docker

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

